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1 - Introduction 
 Measurements of real-time and off-line electrodynamics of the human 
brain have evolved over the years and one purpose of this paper is to provide 
simple hand calculator equations to facilitate standardization and the 
implementation of standardized methods.   We begin with the fact that the 
brain weighs approximately 2.5 pounds and consumes approximately 40% to  
60% of blood glucose (Tryer, 1988) and consumes as much oxygen as our 
muscles consume during active contraction, 24 hours a day.   How is this 
disproportionate amount of energy used?   The answer is that it is used to 
produce electricity including synchronized and collective actions of small 
and large groups of neurons linked by axonal and dendritic connections.    
Each neuron is like a dynamically oscillating battery that is continually 
being recharged (Steriade, 1995).   Locally connected neurons recruit 
neighboring neurons with a sequential build up of electrical potential 
referred to as the recruiting response and the augmenting response also 
called EEG “burst activity” and “spindles” (Thatcher and John, 1977; 
Steriade, 1995).   EEG burst activity is recognized by spindle shaped waves 
that wax and wane (i.e., augmenting by sequential build up then asymptote 
and then decline to repeat as a waxing and waning pattern) are universal and 
are present in delta (1 – 4 Hz) theta (4-7.5Hz), alpha (8 to 12 Hz), beta (12.5 
Hz to 30 Hz) and gamma (30 Hz – 100 Hz) frequency bands during waking 
in normal functioning people.  Another fundamental fact is that only 



synchronized cortical neurons produce the electricity called the 
electroencephalogram and the generators are largely located near to the 
electrode location with approximately 50% of the amplitude produced 
directly beneath the recording electrode and approximately 95% within a 6 
cm radius (Nunez, 1981; 1995).   Unrelated distant sources produce lower 
amplitude potentials by volume conduction that add or subtract at a zero 
phase difference between the source and the surface sensors.    Locally 
synchronized neurons are connected to distant groups of neurons (3 cm to 21 
cm) via cortico-cortical connections (Braitenberg, 1978; Schulz and 
Braitenberg, 2002) and are connected to localized clusters or populations of 
neurons that exhibit significant phase differences or delays due to axonal 
conduction velocities, synaptic rise times, synaptic locations and other 
neurophsyiological delays that can not be produced by volume conduction 
which is defined at Phase Difference = 0.    Connectivity is defined as the 
magnitude of coupling between neurons, independent of volume conduction.    
This is because in this paper we are interested in the synchronous coupling 
and de-coupling of local and long distance populations of neurons that add 
together and give rise to the rhythmic patterns of the EEG seen at the scalp 
surface (i.e., dynamic connectivity).  Much has been learned about brain 
function in the last few decades and EEG biofeedback to control robotic 
limbs coupled with PET and fMRI cross-validation of the location of the 
sources of the EEG shows that the future of quantitative EEG or QEEG is 
very bright and positive because of the reality of the neurophysics of the 
brain and high speed computers.    3-dimensional EEG source localization 
methods have proliferated with ever increased spatial resolution and cross-
validation by fMRI, PET and SPECT.   Understanding measurements of 
coupling between populations of neurons in 3-dimensions using 3-
Dimensional Source analysis such as by Michael Scherg, Richard 
Greenblatt, Mark Pflieger, Fuchs, Roberto Marqui-Pascual and others in the 
last 20 years.    An easily applied “Low Resolution Electromagnetic 
Tomography” is one of the better localization methods although it does offer 
resolutions of only 3 – 6 cm, but nonetheless, much better than the 
alternative of zero 3-dimensional resolution that conventional EEG provides 
Pascual-Marqui, 1999; Pascual-Marqui et al, 2001; Thatcher et al, 1994; 
2005a; 2005b; 2006; Gomes and Thatcher, 2001).  As emphasized by many, 
it is critical to understand how widely distant regions of the brain 
communicate before one can understand how the brain works.  It is in 
recognition of the importance of understanding brain connectivity especially 
using explicit and step by step methods that the present paper was 
undertaken.   We attempt to use hand calculator simplicity when ever 



possible and this is why the cospectrum and quadspectrum are in simple 
notation such as a(x) or u(y) to represent different values that are added or 
multiplied.   The hand calculator equations in section 9 are important as a 
reference for a programmer or a systems analysist to implement in a digital 
computer and thereby provide testable standards and simplicity. 
 
2- EEG Amplitude 
 Nunez (1994) estimated that 50% of the amplitude arises from directly 
beneath the scalp electrode and approximately 95% is within a 6 cm 
diameter.   Cooper et al (1965) estimated that the minimal dipole surface 
area necessary to generate a potential measurable from the scalp surface is 6 
cm2 which is a circle with a diameter = 2.76 cm.   However, the amplitude of 
the EEG is not a simple matter of the total number of active neurons and 
synapses near to the recording electrode.  For example, volume conduction 
and synchrony of generators are superimposed and mixed in the waves of 
the EEG.  Volume conduction approximates a gaussian spatial distribution 
for a given point source and volume conduction of the electrical field occurs 
at phase delay = 0 between any two recording points (limit speed of light) 
(Feinmann, 1963).  If there is a consistent and significant phase delay 
between distant synchronous populations of neurons or sources, for example, 
a consistent 30 degree phase at 6 to 28 cm, then this phase difference can not 
be explained by volume conduction.   Network properties are necessary to 
explain the EEG findings.   This emphasizes the importance of phase 
differences between different EEG channels that are located at different 
positions on the human scalp.    A large phase difference can not be 
explained by volume conduction and the stability of phase differences 
influences the amplitude of the EEG as well.    Mathematically, phase can 
only be measured using complex numbers, however, we try with our hand 
calculator equations to both explain this and make available simple 
equations that use the cospectrum and quadspectrum (see page 23 section 
10).  However, it is important to note that complex numbers are necessary at 
a fundamental level of physics in which the electrical field and quantum 
mechanics both rely upon complex numbes and nature itself obeys the 
algebra of complex numbers.   One wonders if the physical laws of the 
universe dictate the evolution of human mathematical invention?  The 
human mind tends to find and extend the laws of the universe by a recurrent 
loop back on itself? 
 The importance of the synchrony of a small percentage of the synaptic 
sources of EEG generators is far greater than the total number of generators.  
For example, Nunez (1981; 1994) and Lopes da Silva (1994) have shown 



that the total population of synaptic generators of the EEG are the 
summation of : 1- a synchronous generator (M) compartment and, 2- an 
asynchronous generator (N) compartment in which the relative contribution 
to the amplitude of the EEG is A =  NM  .   This means that synchronous 
generators contribute much more to the amplitude of EEG than 
asynchronous generators.    For example, assume 105 total generators in 
which 10% of the generators are synchronous or M = 1 x 104 and N = 9 x 
104 then EEG amplitude = 44 10910 x  , or in other words, a 10% change in 
the number of synchronous generators results in a 33 fold increase in EEG 
amplitude (Lopez da Silva, 1994).   Blood flow studies of intelligence often 
report less blood flow changes in high I.Q. groups compared to lower I.Q. 
subjects (Haier et al, 1992; Haier and Benbow, 1995; Jausovec and 
Jausovec, 2003).  Cerebral blood flow is generally related to the total 
number of active neurons integrated over time, e.g., 1 – 20 minutes 
(Yarowsky et al, 1983: 1985; Herscovitch, 1994).   In contrast, EEG 
amplitude as described above is influenced by the number of synchronous 
generators much more than by the total number of generators and this may 
be why high I.Q. subjects while generating more synchronous source current 
than low I.Q. subjects often fail to show greater cerebral blood flow 
(Thatcher et al, 2006).     
 
3- What is Volume Conduction and Connectivity? 

The EEG has a dual personality.   One personality is the electrical 
fields of the brain which operate at the speed of light where dipoles 
distributed in space turn on and off and oscillate at different amplitudes and 
frequencies.   Paul Nunez’s book “Electrical Fields of the Brain”, Oxford 
Univ. Press, 1981 is an excellent text especially in regard to the electrical 
personality of the EEG.   The other personality of the EEG is the source of 
the electrical activity which is an excitable medium, much like a forest fire 
in which the fuel at the leading edge of the fire results in a traveling wave 
with ashes left behind representing a long duration refractory period.    
Hodkin and Huxley wrote the fundamental excitable medium equations of 
the brain in 1952 for which they later received the Nobel prize.   The 
excitable medium of the brain are the axons, synapses, dendritic membranes 
and ionic channels that behave like “kindling” at the leading edge of a 
confluence of different fuels and excitations.    As mentioned previously, the 
majority of the cortex about 80% is excitatory with recurrent loop 
connections yet there is no epilepsy in a healthy brain.   How is such 
stability possible with such an abundance of positive feedback?  The answer 



is because there are relatively long refractory periods (after action potentials 
and after potentials) and this single property is largely responsible for the 
self-organizational stability of the neocortex.    Given this introduction, 
“EEG Connectivity” is a property of the “networks of the brain” of axons, 
synaptic rise and fall times and burst durations of neurons and is defined by 
the magnitude of coupling between neurons.  Magnitude is typically defined 
by the strength, duration and time delays as measured by electrical recording 
of the electrical fields of the brain produced by networks in the brain.  
Connectivity does not occur at the speed of light and is best measured when 
there are time delays, in fact, volume conduction of electricity is not a 
property of a network and although it occurs at zero time delay non-volume 
conduction zero phase delay through the central synchronization of the 
thalamus can produce wide spread zero phase delays which are not due to 
volume conducton.    This important property of the network sources of the 
EEG versus the electrical properties means that time delays determine 
whether or not and to the extent that a network is responsible for the 
electrical potentials measured at the scalp surface.   Volume conduction 
defined at zero phase lag is the electrical personality and lagged correlations 
is the network personality of EEG.    

Coupled oscillators in an excitable medium are the topic of this paper 
starting with the genesis of the electrical potentials being ionic fluxes across 
polarized membranes of neurons with intrinsic rhythms and driven rhythms 
(self-sustained oscillations) as described by Steriade (1995) and Nunez 
(1981; 1994).    

Electrical events occur inside of the human body which is made up of 
3-dimensional structures like membranes, skin and tissues that have volume.  
Electrical currents spread nearly instantaneously throughout any volume.  
Because of the physics of conservation there is a balance between negative 
and positive potentials at each moment of time with slight delays near to the 
speed of light (Feynmann, 1963).    Sudden synchronous synaptic potentials 
on the dentrites of a cortical pyramidal cell result in a change in the 
amplitude of the local electrical potential referred to as an “Equivalent 
Dipole”.   Depending on the solid angle between the source and the sensor 
(i.e., electrode) the polarity and shape of the electrical potential is different.   
Volume conduction involves near zero phase delays between any two points 
within the electrical field as collections of dipoles oscillate in time (Nunez, 
1981).   As mentioned previously, zero phase delay is one of the important 
properties of volume conduction and it is for this reason that measures such 
as the cross-spectrum, coherence, bi-coherence and coherence of phase 



delays are so critical in measuring brain connectivity independent of volume 
conduction.    

When separated generators exhibit a stable phase difference of, for 
example, 30 degrees then this can not be explained by volume conduction.1   
As will be explained in later sections correlation coefficient methods such as 
the Pearson product correlation (e.g., “co-modulation” and “Lexicor 
correlation”) do not compute phase and are therefore incapable of 
controlling for volume conduction.   The use of complex numbers and the 
cross-spectrum is essential for studies of brain connectivity not only because 
of the ability to control volume conduction but also because of the need to 
measure the fine temporal details and temporal history of coupling or 
“connectivity” within and between different regions of the brain.    

Figure 1 is an illustration of the cross-spectrum of volume conduction 
vs. connectivity in which a sine wave is generated inside a sphere with 
sensors on the surface.   The top shows the zero phase lag recordings of a 
sine wave and illustrates volume conduction in which the solid angle from 
the source to the surface is equal in all directions.   The bottom shows 
recordings with significant phase differences which can not be accounted for 
by volume conduction and must be due to “connections” in the interior of 
the sphere.   As discussed in more detail in section 9, the cross-spectrum is 
the sum of the in-phase potentials (i.e., cospectrum) and out-of-phase 
potentials (i.e., quadspectrum).  The in-phase component contains volume 
conduction and the synchronous activation of local neural generators.    The 
out-of-phase component contains the network or connectivity contributions 
from locations distant to a given source.  In other words, the cospectrum = 
volume conduction and the quadspectrum = non-volume conduction which 
can be separated and analyzed by independently evaluating the cospectrum 
and quadspectrum (see section 9). 

 

                                                 
1 Theoretically, large phase differences can be produced by volume conduction when there is a deep and 
temporally stable tangential dipole that has a positive and negative pole with an inverse electrical field at 
opposite ends of the human skull.   In this instance, phase difference is maximal at the spatial extremes and 
approximates zero half way between the two ends of the standing dipole.  However, this is a special 
situation that is sometimes present in evoked potential studies but is absent in spontaneous EEG studies.    
In the case of spontaneous EEG there is no time locked event by which to synchronize potentials that result 
in a standing dipole, instead, there is an instantaneous summation of millions of ongoing rhythmic 
pyramidal cell dipoles with different orientations averaged over time.     



Fig. 1 – Illustration of volume conduction vs. connectivity.  Top is a sine 
wave generator in the center of a sphere with sensors on the surface of the 
sphere.   The sine wave generates zero phase lag square waves at all points 
on the surface of the sphere due to volume conduction.    The cospectrum is 
high and the quadspectrum = 0.   The bottom is the same sine wave 
generator in the center of the sphere but with network connections in the 
interior of the sphere.   As a consequence there are phase differences in the 
surface recordings which are detected in the quadspectrum component of the 
cross-spectrum.  See section 9 for details. 
 

Another illustration of the relationship between “In-Phase” and 
volume conduction vs. “Out-of Phase” and connectivity is in figure 2. 



Fig. 2- Illustration of the “In-Phase” volume conduction vs. “Out-of-Phase” connectivity 
components of the Cross-Spectrum.  See section 9 for more details. 
 
 In NeuroGuide it is simple to test the “In-Phase” vs “Out-of-Phase” 
analyses by using sine waves and shifting one sine wave with respect to a 
second sign wave and then computing the cospectrum and quadspectrum.  
To test the cospectrum and quadspectrum download NeuroGuide from 
http://www.appliedneuroscience.com/Contact%20Download1.htm and after 
launching NeuroGuide click File > Open > Signal Generation and then enter 
sine waves at different phase shifts for a given frequency and then compute 
the cospectrum and quadspectrum.   Figure 3 shows an example of the  

http://www.appliedneuroscience.com/Contact%20Download1.htm


Fig. 3- Example of cospectrum (in-phase) and quadspectrum (out-of-phase) power using 
two 5 Hz sine waves shifted by 10 degrees from 0 to 180 degrees.  Blue diamonds are the 
in-phase cospectrum values and the red squares are the out-of-phase quadspectrum power 
values. 
 

 The use of the quadspectrum or “Out-of-Phase” computation is a 
method to remove zero phase lag from the computation of coherence and 
thus is volume conduction corrected coherence also referred to as Zero-
phase lag removed coherence (Nolte et al, 2004; Pascual-Marqui, 2007). 

 
4-  How is network zero phase lag different from volume conduction? 
 Spatially distributed neurons exhibit near zero phase difference, 
referred to as a “binding” or “synchrony” within a network of neurons, 
which is independent of volume conduction (Ekhorn et al, 1988; Gray et al, 
1989, John, 2005; Thatcher et al, 1994).   The thalamus is the master 
synchronizer of the EEG and “binding” at zero phase lag can easily be 
produced by the centrally located thalamus (see Steriade, 1995).   Multiple 
unit recordings and Magnetic electroencephalography (MEG) which is 
invisible to volume conduction have firmly established the scientific validity 
of network zero phase lag independent of volume conduction (Rogers, 



1994).   The thalamus and septo-hippocampal systems are centrally located 
inside of the brain and contains “pacemaker” neurons and neural circuits that 
regularly synchronize widely disparate groups of cortical neurons (Steriade, 
1995).    As illustrated in Figure 4, a centrally synchronizing structure “C” 
can produce zero phase lag and simultaneously synchronize neural 
populations “A” and “B” without any direct connection between “A” and 
“B”.    As shown in figure 3 the cross-spectrum of coherence and phase 
difference can distinguish between volume conduction and network zero 
phase differences such as produced by the thalamus or the septal-
hippocampus-entorhinal cortex, etc.    For example, if the phase difference is 
uniformly zero in the space between “A” and “B” then this is volume 
conduction.  On the other hand if the phase difference is not zero at points 
spatially intermediate between “A” and “B” then this is an example of zero 
phase difference independent of volume conduction.  This is why a larger 
numbers of electrodes is important and why dipole source reconstruction can 
help resolve thalamic synchronization of cortical sources.  The study by 
Thatcher et al, 1994 is an example of significant phase differences at 
intermediate short distances in contrast to zero phase difference between 
more distant locations which can not be explained by volume conduction. 

In the chapters below we begin with a discussion of correlation, then 
coherence and phase difference and then bi-spectra.   We show that there is a 
commonality shared by all of these measures – the commonality is the 
statistical “degrees of freedom”.  Each measure of cortical network 
dynamics involves the detection of a “signal” within “noise” and each 
measure shares the same statistical properties, namely, increased sample 
sizes are proportional to increased sensitivity and increased accuracy of the 
estimates of coupling. 
 
5- Pearson product correlation (“comodulation” and Lexicor “spectral 
correlation coefficient”) 
 The Pearson product correlation coefficient is often used to estimate 
the degree of association between amplitudes or magnitudes of the EEG over 
intervals of time and frequency (Adey et al, 1961).  The Pearson product 
correlation coefficient does not calculate a cross-spectrum and therefore 
does not calculate phase nor does it involve the measurement of the 
consistency of phase relationships such as with coherence and the bi-
spectrum.   However, coherence and the Pearson product correlation 
coefficient are statistical measures and both depend on the same number of 
degrees of freedom for determining the accuracy of the measure as well as 
the same levels of statistical significance.   The Pearson product correlation 



coefficient is a valid and important measure of coupling and it is normalized 
and independent of absolute values. 

The Pearson product correlation coefficient (PCC)  has been applied 
to the analysis of EEG spectra for over 40 years, for example, some of the 
earliest studies were by Adey et al (1961); Jindra (1976) Paigacheva, I.V. 
and Korinevskii (1977).  The general method is to compute the auto power 
spectrum for a given epoch and then to compute the correlation of power or 
magnitude over successive epochs, i.e., over time.   The number of degrees 
of freedom is determined by the number of epochs.   Neuroscan, Inc. offered 
this method of EEG analysis in the 1980s.    Recently, the application of the 
Pearson product correlation coefficient (PCC) for magnitude has been called 
“comodulation” (Sterman and Kaiser, 2001).   Below is the general equation 
for the computation of “spectral correlation” or “spectral amplitude 
correlation” and the recent term “comodulation” which is a limited term 
because it fails to refer to the condition of a 3rd source affecting two other 
sources without the two sources being directly connected.  It is also limited 
because comodulation can not correct for volume conduction.  The term “co-
modulation” has a different meaning than “synchronization” (Pikovsky et al, 
2003) and in order to reduce confusion it is best to simply refer to the 
correlation itself.   In other words, it is best to use the term “Correlation” or 
“Pearson product correlation coefficient” (PCC) unless additional path 
analyses or partial correlation analyses were used to show that “co-
modulation” and not a 3rd modulator “C” is the correct model or that there is 
no synchrony involved.   Figure 3 illustrates the differences in meaning 
when using the terms “Correlation” vs the term “Comodulation”.  Coherence 
has the same problem as the correlation in distinguishing a 3rd source.  
However the term coherence, like correlation, does not wrongly assume 
comodulation. 

 



Fig. 4 – The correlation coefficient (and coherence) includes at least two possible 
couplings and mixtures of these two types of coupling: 1- where neuron A 
influences neuron B and vice versa and, 2- where a third neuron ‘C’ influences 
neuron A and neuron B and there is no connection between A and B.   Co-
modulation omits the standard ‘C’ possibility and is limited to where neuron A 
influences neuron B and vice versa.   The limitation of the term “comodulation” is 
that without partial correlation analyses or path analyses it is not possible to omit 
coupling number 2 which means that the term comodulation can be misleading 
unless these additional analyses are conducted. 

 
As discussed by Pikovsky et al (2003) the term modulation is 

complicated and it is possible for there to be modulation without 
synchronization and synchronization without modulation.  As stated by 
Pikovsky et al (2003, p. 77) “Generally, modulation without synchronization 
is observed when a force affects oscillations, but cannot adjust their 
frequency.”   Without further analyses to determine this distinction it is best 
to simply refer to amplitude or power correlation. 

 The distinguishing characteristic of the application of the Pearson 
product correlation coefficient is the computation of the time course of the 
normalized covariance of spectra over an interval of time: 
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or the computationally simpler equation that one can compute more easily 
using a hand calculator: 
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For example, if one computes the FFT over 1 second epochs for a 60 

second recording period, i.e., N = 60, then the number of degrees of freedom 
in the spectral correlation coefficient (SCC) for channels X and Y = 60 – 1 = 
59.  For 59 degrees of freedom then a correlation of 0.258 or higher is 
statistically significant at P < .05.  This is a valid and commonly used 
connectivity measure, however, it is important to remember that the 
correlation coefficient includes volume conduction + network connectivity, 
i.e., they are inextricably confounded.  This is because the correlation 
coefficient omits phase difference and involves the “in-phase” or 
autospectral values and therefore volume conduction can not be separated 
and eliminated.   This makes it more difficult to know if factors such as the 
number and strength of connections are what are changing due to 
experimental control or is it the “volume conduction” that is changing?  As 
explained in section 8, coherence using complex numbers and phase 
differences separate volume conduction from network dynamics and 
automatically solve this problem. 

Another method of applying the Pearson Product correlation was 
developed by Lexicor, Inc. in the 1990s.   This method computes the 
correlation between EEG spectra measured from two different locations and 
uses the individual spectral bin values within a frequency band.   For 
example, if there are five frequency bins in the alpha frequency band (i.e., 
8Hz, 9Hz, 10Hz, 11Hz and 12Hz), then N = 5 and the number of degrees of 
freedom = N – 1 = 4.   When the degrees of freedom = 4 then a correlation 
coefficient of 0.961 or higher is necessary in order to achieve statistical 
significance at P < .05.  Equations 1 and 2 are used to calculate the Pearson 
product correlation in both instances.    



Dr. Thomas Collura recently evaluated the commonalities and 
differences between “comodulation” and the Lexicor application of the 
Pearson product correlation (Collura, 2006; 2008).  It was shown that the 
difference between the “co-modulation” and Lexicor methods is primarily in 
terms of the number of degrees of freedom as well as the evaluation of 
covariance of spectral energies over time in the former application of the 
Pearson Product correlation versus within frequency band covariation across 
channels in the Lexicor method of applying the Pearson product correlation.   

Below is a hand calculator example of a Lexicor application of the 
Pearson product correlation coefficient for the alpha frequency band (8 – 12 
Hz column on the left) between channel X and channel Y using easy 
numbers for a hand calculator using equation 2 with N = 5 (i.e., number of 
spectral bins within a band and the number of degrees of freedom = 4). 

    Table I 
   X2 (uV2)    Y2 (uV2)        X (uV)       Y (uV)      XY 

8Hz 1  2      1       4        2 
9Hz 2 1     4       1        2 
10Hz 3 2     9       4        6 
11Hz 3 1      9       1        3 
12Hz 4  2    16       4        8 

∑X2 = 39 ∑Y2 = 18  ∑X = 13 ∑Y = 8 ∑XY = 21 
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 Figure 5 shows the results of the BrainMaster implementation of the 
Lexicor spectral correlation method in which very high correlation values 
are present because of the low number of degrees of freedom and especially 
the divergent differences at higher frequencies because of slight differences 
in filtering.    This figure emphasizes that extreme caution should be used 
when computing a correlation coefficient using the Lexicor method with low 
degrees of freedom. 



 

Fig. 5  - Comparisons between the BrainMaster and Lexicor implementation of the 
spectral correlation method.   The correlation values are all very high due to the low 
degrees of freedom and miss-match of calculation occurs at the higher frequencies 
depending on the filter parameters (From Collura, 2006). 
 
 LORETA source correlations are another example of the application 
of the Pearson product correlation coefficient (Thatcher et al, 2006).   Below 
are examples of the relationship between cortico-cortical connectivity and 
distance from a point source using LORETA current sources and the Pearson 
product correlation coefficient (PCC) as applied to sequential epochs of 
time.   The degrees of freedom ranged from 29 to 60 in which a correlation 
of 0.367 to 0.254 is necessary for P < .05.  This analysis is a cross-frequency 
correlation as well as a cross-region of interest correlation.  The time series 
analyses of cross-channel and cross-frequency coherence and phase 
synchrony is discussed in sections 25 to 39. 
 



Fig. 6 - Illustration of a cortico-cortical connection model.   Top is the organization of 
intra-cortical connections according to Schulz and Braitenberg (2002).  A = gray matter 
intra-cortical connections, B = ‘U’ shaped white matter connections and C = long 
distance white matter connections.  Bottom is an exemplar contour map of source 
correlations in which the horizontal bands of increasing and decreasing source 
correlations correspond to the different cortico-cortical connection systems as described 
in the top of the figure.  From Thatcher et al, 2006. 
 
 
6- What is Coherence? 

Coherence is a measure of the amount of phase stability or phase jitter 
between two different time series.  Coherence combines something 
analogous to the “Pearson product-moment correlation” to the phase angles 
between two signals.  When the phase difference between two signals is 
constant than coherence = 1, when the phase difference between signals is 
random then coherence = 0.  It is possible for there to be a constant phase 
angle difference at two different frequencies.  In the later case the 
terminology is cross-frequency coherence or bi-spectral coherence or n:m 
phase synchrony (Schack et al, 2002; 2005).  If the measures are within the 
same frequency band, then the terminology is simply “coherence” which 
assumes auto-frequency coherence.   Coherence is mathematically analogous 



to a Pearson product-moment correlation and therefore is amplitude 
normalized, however, coherence is a statistic of phase differences and yields 
a much finer measure of shared energy between mixtures of periodic signals 
than can be achieved using the Pearson product-moment correlation 
coefficient of amplitudes.   In fact, coherence is essential because the degree 
of relationship or coupling between any two living systems cannot be fully 
understood without knowledge of its frequency structure over a relative long 
period of time.  Another advantage of Coherence, as mentioned previously, 
is its dependence on the consistency of the average phase difference between 
two time series, where as the Pearson product-moment correlation 
coefficient is independent of phase differences.   The fine details of the 
temporal relationship between coupled systems is immediately and 
sensitively revealed by coherence. 
 In this paper we will first describe the mathematics of the 
autospectrum and power spectrum as they apply to EEG coherence by using 
simple hand calculator instructions so that one can step through the 
mathematics and understand coherence and phase at a basic level (some of 
the deeper mathematical detail is in the Appendix).   We will step the reader 
through simple examples that can be solved with a hand calculator (scientific 
calculator is recommended) to further illustrate how coherence is computed 
and to demonstrate by simulation of EEG signals and noise.  We will also 
address the statistical properties of the power spectrum, coherence and phase 
synchrony using calibration sine waves and the FFT in order to illustrate the 
nature of coherence and phase angle (i.e., phase difference and direction) 
and finally, a statistical standard by which the signal-to-noise ratio and 
degrees of freedom in the computation of EEG coherence are measured 
using a hand calculator and by computer simulation of the EEG.   Computer 
signal generators not only verify but most importantly also explore a rich 
universe of coherence and phase angles with a few mouse clicks (download 
a free EEG simulator at: http://www.appliedneuroscience.com and download 
the NeuroGuide demo program.  Click File > Open > Signal Generation to 
simulate the EEG, including “Spindles” and inter-spindle intervals, etc.  
Another free EEG simulation program is at: 
http://www.besa.de/index_home.htm , a third free EEG simulation program 
(purchase of MatLab required) is at: 
http://www.sccn.ucsd.edu/eeglab/index.html and a fourth simulation 
program for the mathematics of the Fourier series is: 
http://www.univie.ac.at/future.media/moe/galerie/fourier/fourier.html#fourie
r 

http://www.appliedneuroscience.com/
http://www.besa.de/index_home.htm
http://www.sccn.ucsd.edu/eeglab/index.html


Mathematical and statistical standardization of EEG coherence are 
best understood using a hand held calculator and then by simulation of the 
EEG.  

Coherence arises from Joseph Fourier’s 1805 fundamental inequality 
where by the ratio of the cross-spectrum/product of auto-spectrum < 1.  
Coherence is inherently a statistical estimate of coupling or association 
between two time series and is in essence the correlation over trials or 
repeated measures. As mentioned previously, the critical concept is “phase 
consistency”, i.e., when the phase relationship between two time series is 
constant over trials than coherence = 1. 
 
7- How Does One Compute Coherence? 
 The first step in the calculation of the coherence spectrum is to 
describe the activity of each raw time-series in the frequency domain by the 
“auto-spectrum” which is a measure of the amount of energy or “activity” at 
different frequencies.   The second step is to compute the “cross-spectrum” 
which is the energy in a frequency band that is in common to the two 
different raw data time-series.   The third step is to compute coherence 
which is a normalization of the cross-spectrum as the ratio of the auto-
spectra and cross-spectra.  To summarize: 
 
1- Compute the auto-spectra of channels X and Y based on the “atoms” of 

the spectrum 
2-  Compute the cross-spectra of X and Y from the “atoms” of the spectrum 
3-  Compute Coherence as the ratio of the auto-spectra and cross-spectra 
 
8- First Compute the auto-spectra of channels X and Y based on the 
“atoms” of the spectrum 
 Joseph Fourier in his thesis of 1805, benefiting from almost a century 
of failed attempts, finally correctly showed that any complex time-series can 
be decomposed into elemental “atoms” of individual frequencies (sine and 
cosine and linear operations).  Fourier defined the autospectrum as the 
amount of energy present at a specific frequency band.  He showed that the 
autospectrum can be computed by multiplying each point of the raw data by 
a series of cosines, and independently again by a series of sines, for the 
frequency of interest.  The average product of the raw-data and cosine is 
known as the cosine coefficient of the finite discrete Fourier transform, and 
that for the sine and the raw data as a sine coefficient.  The relative 
contributions of each frequency are expressed by these cosine and sine 
(finite discrete Fourier) coefficients.  The cosine and sine coefficients 



constitute the basis for all spectrum calculations, including the cross-
spectrum and coherence.  Tick (1967) referred to the sine and cosine 
coefficients as the “atoms” of spectrum analysis.   For a real sequence {xi, i 
= 0, . . . ., N -1} and Δt = the sample interval and f = frequency, then the 
cosine and sine transforms are: 
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 A numerical example of the computation of the Fourier Transform is 
shown in Table II.   The data is from Walter (1969) which served as a 
numeric calibration and tutorial of EEG coherence in the 1960s (see also 
Jenkens and Watts, 1969 and Orr and Naitoh, 1976).   This 1960s dataset is 
still useful for explaining the concept of spectral analysis as it applies to the 
Electroencephalogram as QEEG was developed in the 1950’s and used at 
UCLA and other universities giving rise to a large number of publications 
and the development of the BMDP Biomedical statistical programs in the 
1960s.   The Walter (1969) data are 8 digital time points that were sampled 
at 100 millisecond intervals (0.1 sec. intervals) with 3 separate 
measurements (i.e., repetitions).  The highest frequency resolution of this 
data set is defined as 1/T = 1/0.8 sec. = 1.25 Hz.  The highest discernable 
frequency is 5 Hz (Nyquist limit) and thus the data are bounded by 1.25 Hz 
and 5 Hz, with values at every 1.25 Hz.  We will use the same historic 
examples that pioneers used in the early development of quantitative EEG 
used in the 1950s - 1970s.  The analyses below are based on the careful step 
by step evaluation of the Walter (1969) paper by Orr, W.C. and Naitoh, P.  
in 1967 which we follow.    

The Walter (1969) cosine and sine coefficients in Table II will be used 
for the purpose of this discussion.  The focus will be on the use of a hand 
calculator to compute coherence using the values in Table II and not on the 
computation of the coefficients themselves.2  The reader is encouraged to 

                                                 
2 A Matlab computation of the sine and cosine coefficients using the raw data in Table II  produced the 
following coefficients 2.5355- 2.9497i,  17.0000- 1.0000i,  -4.5355- 6.9497i using the complex notation a + 
ib.   Even though different coefficients may be produced than those published (Walter (1969; Orr and 
Naitoh, 1976) let us continue to use the Walter (1969) coefficients because the procedures to compute 
coherence and not the coefficients are what are of interest in this paper.  We will produce an updated table 
and set of numbers in a future revision. 



either write intermediate values on a piece of paper or to store temporary 
variable values using the memory keys of their hand calculator. 
 

Table II 
Example of Raw Data 

 
Table of                       Channel X 
Observation 
(seconds)        0.0     0.1    0.2     0.3    0.4    0.5    0.6    0.7 

Table of                       Channel Y 
Observation 
(seconds)        0.0     0.1    0.2     0.3    0.4    0.5    0.6    0.7 

Record 1      3      5     -6     2      4     -1    -4     1 
Record 2      1      1     -4     5      1     -5    -1     4 
Record 3     -1      7     -3     0      2      1    -1    -2 

Record 1     -1      4     -2     2      0    -0      2    -1 
Record 2      4      3     -9     2      7      0    -5     1 
Record 3     -1      9     -4    -1     2      4    -1    -5 

 
 
 

Hand Calculator Example of Cosine and Sine Coefficients 
 
                              Channel X                                                              Channel Y 
                    Cosine Coefficients a(x)                                      Cosine Coefficients b(y) 
f (Hz)                 1.25             2.5              3.75              5.0    f (Hz)                1.25             2.5             3.75               5.0 
Record 1     0.634        4.25       -1.134       -1.25 
Record 2     0.634        2.0         -1.134       -0.875
Record 3    -0.043        1.75       -1.457      -1.375 
 
Average      0.408        2.667      -1.242      -1.167 

Record 1      -0.073    -0.25      -0.427       -0.75   
Record 2      -0.398      6.5       -1.106       -1.25 
Record 3      -0.368      1.5        -0.934      -1.375 
 
Average       -0.272     2.583     -0.822       -1.125 

 
 
                              Channel X                                                              Channel Y 
                    Sine Coefficients b(x)                                             Sine Coefficients b(y) 
f (Hz)                 1.25             2.5              3.75              5.0    f (Hz)                1.25             2.5             3.75               5.0 
Record 1     0.737        0.25        1.737        0.000 
Record 2     0.487       -3.25        1.987        0.000
Record 3     0.414         2.5         2.414        0.000 
 
Average      0.546       -1.67        2.048       0.000 

Record 1       0.237      0.75       2.237       0.000 
Record 2      -0.043      0.00       1.457       0.000 
Record 3       0.641      4.75        2.341      0.000 
 
Average        0.345     1.833      2.012       0.000 

  
 

                              Autospectrum X                                                  Autospectrum  Y 
                     
f (Hz)                 1.25             2.5              3.75              5.0    f (Hz)                1.25             2.5             3.75               5.0 
Record 1     0.945      18.125      4.303        1.563 
Record 2     0.639       14.563     5.234        0.766 
Record 3     0.173         9.313      7.95         1.891 
 
Average      0.586       14.00        5.838       1.407 

Record 1       0.061      0.625      3.186       0.561 
Record 2       0.159     42.25       3.342       1.563 
Record 3       1.036      24.813    6.353       1.891 
 
Average        0.419     22.561      4.96        1.339 

 



 
The frequency analysis of a time series of finite duration “at” a chosen 

frequency does not really show the activity precisely at that frequency alone.  
The spectral estimate reflects the activities within a frequency band whose 
width is approximately 1/T around the chosen frequency.  For example, the 
activity “at” 1.25 Hz in the example in Table II represents in fact the 
activities from 0.625 Hz to 1.875 Hz (or equivalently, 1.25 Hz ± 0.625 Hz). 

The autospectrum is a “real” valued measure of the amount of activity 
present at a specific frequency band.  The autospectrum is computed by 
multiplying the raw data by the cosine, and independently, by the sine for 
the frequency of interest in a specific channel.  The average product of the 
raw-data and cosine is referred to as the “cosine coefficient” of the finite 
discrete Fourier transform, and the average product of the sine and the raw-
data is referred to as the sine coefficient.  Let N, f and a(x) represent the 
number of observed values for a time series x(i), the frequency of interest, 
and a cosine coefficient n, then the summation or necessary “smoothing” is 
defined as: 
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Each frequency component has a sine and cosine numerical value.  The 
actual autospectrum value is arrived at by squaring and adding the respective 
sine and cosine coefficients for each time series.  The power spectral value 
for any frequency intensity is: 
 
 Eq. 7 -      F(x) = (a2 (x) + b2 (x)), 
 
That is, the power spectrum is the sum of the squares of the sine and cosine 
coefficients at frequency f as shown in Table II. 
 
9- Second Compute the cross-spectra of X and Y from the “atoms” of 
the spectrum 

To calculate the cross-spectrum, it is necessary to consider the “in-
phase” and “out-of-phase” components of the signals in channels X and Y.  
The former is referred to as the co(incident) spectrum or cospectrum and the 



latter is referred to as the guadrature spectrum or quadspectrum.  The “in-
phase” component is computed by considering the sine coefficients as well 
as the cosine coefficients of X and Y.  The “out-of-phase” component 
concerns relating the cosine coefficient of time series X to the sine 
coefficient of times series Y, and similarly the sine coefficient of times 
series X to the cosine coefficient of time series Y.  

 A simple hand calculator test will show that the quadspectrum = 0 for  
any two in-phase sine waves (i.e., phase difference = 0).   This simple test is 
important when eliminating or separating the “volume conduction” 
contribution to the cross-spectra generated by the brain network or brain 
“Connectivity” aspects of EEG as discussed in section 2.  For example, non-
volume conduction measures where there are statistically significant phase 
differences of less than 1 degree have been published (Ekhorn et al, 1988; 
Barth, 2003).   Long electrical phase differences of 50 to 300 simply can not 
be explained by volume conduction as a matter of physics. 
 
10- How to Compute the cospectrum and quadspectrum 
Below is a hand calculator example of how to compute the coherence 
spectrum.  Step 1 is to calculate the cospectrum and quadspectrum: 
 
a(x) = cosine coefficient for the frequency (f) for channel X 
b(x) = sine coefficient for the frequency (f) for channel X 
u(y) = cosine coefficient for the frequency (f) for channel Y 
v(y) = sine coefficient for the frequency (f) for channel Y 
 
The cospectrum and quadspectrum then are defined as: 
 
Eq. 8 - Cospectrum (f) = a(x) u(y) + b(x) v(y) 
 
Eq. 9 - Quadspectrum (f) = a(x) v(y) – b(x) u(y) 
 
The cross-spectrum power is real valued and defined as: 
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That is, the cross-spectrum power is the absolute value of the complex-
valued cross-spectrum.  The cross-spectrum power is a measure of 
connectivity based on the total shared energy between two locations at a 
specific frequency and it is a mixture of in-phase and out-of-phase activity 
(i.e., local and distant).  The cross-spectrum power is a real number because 
a complex number times the complex conjugate is a real number.    
Coherence is a normalization of the cross-spectral power by dividing by the 
autospectra or the in-phase component and, therefore, coherence is 
independent of autospectral amplitude or power and varies from 0 to 1. 
 
 Table III is an illustration of the computational details of coherence based 
on the FFT auto and cross-spectra in Table II: 
 
 

Table III 
Hand Calculator Example 

Cospectrum, Quaspectrum and Ensemble Smoothing 
 
F (Hz) Cospectrum 

1.25         2.50         3.75         5.00 
Quaspectrum 
 1.25        2.50         3.75           5.00 

Record 1 
Record 2 
Record 3 
 
Average 

0.128    -0.875       4.375      0.938 
-0.272     13.00        4.147      1.094 
0.363       14.50       7.012      1.891 
 
0.073         8.875     5.176      1.307 

 0.204      3.25        -1.795         0.000
-0.22     -21.125      0.541         0.000 
0.108        4.563     -1.156         0.000
 
0.031       -4.438     -0.803        0.000 

 
 
 
Cospectrum (1.25 Hz) = 0.634(-0.073) + 0.737(0.237) = 0.128 
 
Quadspectrum (1.25 Hz) = 0.634(0.237) – 0.737(-0.073) = 0.204 
 
Cross-spectrum (1.25 Hz) = 0.128 + sq. root -1 (0.204) and 
 
Cross-spectrum power (1.25 Hz) = (0.1282 + 0.2042) ½ = 0.241 
 
This computation is repeated for each frequency component to yield the 
complete cross-spectrum.    
 
 As mentioned previously in section 3, the cross-spectrum is the sum 
of the in-phase potentials (i.e., cospectrum) and out-of-phase potentials (i.e., 



quadspectrum).  The in-phase component contains volume conduction and 
the synchronous activation of local neural generators.    The out-of-phase 
component contains the network or connectivity contributions from 
locations distant to a given source.  In other words, the cospectrum = volume 
conduction and the quadspectrum = non-volume conduction which can be 
separated and analyzed by independently evaluating the cospectrum and 
quadspectrum.  Figure 7 is an example of the differences between the in-
phase and out-of-phase components of the cross-spectrum in a right 
hemisphere hematoma patient.   The cospectrum shows high focal sources 
and little distant zero phase lag relations.   This is indicative of a source near 
to the surface of the scalp at P4 and C4.   The quadspectrum shows high out-
of-phase power or network connections between P4 and the distant left 
hemisphere and especially F3 that are highly out-of-phase.   In general the 
right parietal lobe is out of phase with respect to the spatially distant left 
hemisphere. 
 

Fig. 7 – Left is the cospectral power or In-Phase power in all 171 electrode combinations 
of the 10/20 system.  Right is the quadspectral power or Out-of-Phase relationships.  P4 
and C4 are near to the location of the right hemisphere hematoma.  P4 is out-of-phase 
with a large number of locations, especially the left hemisphere (from NeuroGuide 



Demo).  
 
 
11- Third Compute Coherence as the ratio of the auto-spectra and 
cross-spectra 
 

Coherence is usually defined as: 
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However, this standard mathematical definition of coherence hides some of 
the essential statistical nature and structure of coherence.   To illustrate the 
fundamental statistics of coherence let us return to our simple algebraic 
notation: 
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Where N and the summation sign represents averaging over frequencies in 
the raw spectrogram or averaging replications of a given frequency or both.   
The numerator and denominator of coherence always refers to smoothed or 
averaged values, and, when there are N replications or N frequencies then 
each coherence value has 2N degrees of freedom.  Note that if spectrum 
estimates were used which were not smoothed or averaged over frequencies 
nor over replications, then coherence = 1 (Bendat and Piersol, 1980; 
Benignus, 1968; Otnes and Enochson, 1972).  In order to compute 
coherence, averaged cospectrum and quaspectrum smoothed values with 
degrees of freedom > 2  and error bias = 1/N is used. 
 
 The numerical example of coherence used the average cospectrum 
and quadspectrum across replications in Table III.  For example from Table 
III the coherence at 1.25 Hz is: 
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This computation is repeated for each frequency component to yield the 
complete coherence spectrum, a typical plot of coherence is frequency on 
the horizontal axis (abscissa) and coherence on the vertical axis (ordinate).   
Coherence is sometimes defined and computed as the positive square-root 
and this is referred to as “coherency”.   
 
12- Some Statistical Properties of Coherence 
 How large should coherence values be before they can be considered 
reliable?  The answer is it depends on the true coherence relationship and the 
degrees of freedom used in the averaging computation in equation 13.    In 
general the degrees of freedom increase as a square root of N (i.e., the 
amount of smoothing) and the more the degrees of freedom the better (i.e., 
averaging across frequency and/or across repetitions or “smoothing”).  The 
trade off is between frequency resolution and reliability, the longer the 
interval of time over which averaging occurs or the larger the number of 
repetitions then the greater are the degrees of freedom.  Short time intervals 
of low frequencies by their nature have low degrees of freedom.  For this 
reason the NeuroGuide uses the default of a 1 minute sample, e.g., the theta 
frequency band 4 – 7 Hz NeuroGuide EEG coherence for a 1 minute sample 
= 7 (0.5 Hz bins) + 117 FFTs = 124 x 2 = 248 degrees of freedom.   To test 
the statistical properties of coherence select shorter segments of simulated 
EEG and systematically change the signal-to-noise ratio in the NeuroGuide 
demo signal generator at www.appliedneuroscience.com.  After launching 
the NeuroGuide demo click Open > Signal Generation. 
 
13- How large should coherence be before it can be regarded as 
significantly larger than zero?  
   Low degrees of freedom always involve “Inflation” of the true signal-
to-noise relationship between two channels when a Pearson product 
correlation coefficient is computed.   EEG coherence is no exception and 
this explains why coherence is highly inflated when the degrees of freedom 
are low and the bandwidth is small.  For example, figure 8 shows the 
inflation of coherence (y-axis) when a signal in one channel (4 Hz – 19 Hz 
sine wave) is compared to random noise in a second channel with increasing 
degrees of freedom (x-axis) and different bandwidths.   The ideal is 
coherence = 0.    
 

http://www.appliedneuroscience.com/
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Figure 8 – Coherence (y-axis) vs. number of time samples (y-axis).  Sample rate = 128 
Hz.  The five curves are for different band widths.  Series 1 = 4 Hz, series 2 = 6 Hz, 
series 3 = 8 Hz, series 4 = 10 Hz and series 5 = 12 Hz bandwidths.  The wider the band 
width the more stable and accurate is coherence. 
 
The digital reality of low degrees of freedom using a 2 Hz bandwidth are 
also shown in figure 8.   The y-axis is coherence (x100).   The x-axis are the 
number of time samples at a sample rate of 128 Hz using a digital filter 
(complex demodulation) to compute coherence.   The five curves represent 
different bandwidths (4 Hz, 6 Hz, 8 Hz, 10 Hz & 12 Hz).    The ideal 
coherence value = 0 at infinity and series 5 with a 12 Hz band width is 
approximately 9% at 128 time samples.   Mathematically coherence inflation 
is defined as:  
 
Eq. 15 –  Inflation of Coherence (IF) = coherence of signal (S) divided by 
the coherence of white noise (N) = IF = S/N 

The curves in Figure 8 show that after 1 second of averaging the EEG 
coherence inflation values ranged from 1 to  0.10 (or 10%).  Figure 8 also 
shows that the wider the band width then the larger the number of degrees of 
freedom.    The equation to compute the degrees of freedom when using 
complex demodulation is: 
 
Eq. 16 -     Df = 2BT 
 
Where B = bandwidth and T = time samples (Otnes and Enochson, 1972 and 
Appendix-B). 



Bendat and Piersol (1980) as elaborated by Nunez et al (1997) provide 
another measure of the 95% interval for coherence which is expressed as: 
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Where F(i) applies to the auto or cross spectral density or coherence.  The 
confidence interval depends on the error term e defined as the RMS error 
(i.e., root mean square error).  In general, the error may be estimated by: 
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14- Is there an inherent time limit for EEG Coherence Biofeedback? 

The answer is yes, because coherence is unique in EEG biofeedback 
because it depends upon averaging the phase angles or phase differences.   
The lower the variance or the more constant the phase differences (or the 
greater the phase synchrony or phase locking) then the higher the coherence. 
Similarly, as a property of statistics the greater the degrees of freedom then 
the less the statistical inflation of the real coherence value.   Based on 
operant conditioning studies the feedback interval or feedback delay is 
crucial for the ability of the brain to link together two past events.  Too short 
an interval or too long an interval reduces the likelihood of a person making  
a “connection” between the biofeedback display/sound or signal and the 
brain’s electrical state at a previous moment in time.   In the case of 
amplitude and phase difference the calculation does not depend upon an 
average as it does when computing coherence.  Thus, coherence EEG 
biofeedback inherently requires a longer feedback delay than does the nearly 
instantaneous computations of power, ratios of power, relative power, 
amplitude, amplitude asymmetries, phase difference (or phase angle), etc.  
To the best of our knowledge the minimum amount of inflation that leads to 
the greatest efficacy of biofeedback training using EEG coherence has not 
yet been published.   The minimal interval is a function of at least two 
factors: 1- the stability of the signal being fed back, i.e., a noisy and jumpy 
signal has no connection formation value and, 2- the interval of time 
between the brain event and the feedback.  Both are critical and seconds and 
milliseconds are the domain.   The interval from 0 to about 80 – 100 
milliseconds is a neurophysiological “blank period” during the integration 
interval where simultaneity is resolved as a single “quanta” or “perceptual 



frame” of consciousness (Thatcher and John, 1977; John, 2005).  At about 
300 – 500 msec the match miss-match resolution of expectation and received 
inputs is completed.   Associations and connections in time occur from about 
200 msec to minutes of time.    Thus, operant conditioning of EEG 
biofeedback is likely to work best when the interval of time between an 
“EEG Event” is greater than 100 msec and around 1 – 2 seconds, with a 
operating curve yet to be produced.   When accurate measurements are made 
of the optimal interval of time between a brain event and the feedback signal 
and not active stimulation, then one can expect that 500 msec to 1 sec would 
be a good interval of time for associations to occur using operant 
conditioning EEG biofeedback.  For active stimulation EEG biofeedback 
then phase reset can occur and many other phenomena that can easily be 
measured can occur.   However, modern EEG science easily handles event 
related potentials (ERPs) if one knows the instant in time when the stimulus 
was delivered or the instant in time when the movement of the subject 
occurred.  Spontaneous EEG and ERPs are related in that the background 
EEG is the “mother” of the ERP (electrical field) at a given moment of time.  
The powerful and rhythmic background EEG are the summation of millions 
of excitatory EPSPs oscillating in loops but only firing on the rising phase of 
the oscillation.   This results in a “quantization” of neuron excitability as 
reflected by the rhythms of the EEG.  The idea of “quantization” of neural 
action potentials time locked to the rising phase of the EEG is old and is well 
supported by recent evidence (Buszaki, 2006).     

 
 
15- What is Phase Difference? 
 Coherence and phase difference (measured in angles) are linked by 
the fact that the average temporal consistency of the phase difference 
between two EEG time series (i.e., phase synchrony) is directly proportional 
to coherence.   For example, when coherence is computed with a reasonable 
number of degrees of freedom (or smoothing) then the phase difference 
between the two time-series becomes meaningful because the confidence 
interval of phase difference is a function of the magnitude of the coherence 
and the degrees of freedom.   If the phase angle is random between two time 
series then coherence = 0.  Another way to view the relationship between 
phase consistency (phase synchrony) and coherence is to consider that if 
Coherence = 1, then once the phase angle relation is known the variance in 
one channel can be completely accounted for by the other.  The phase 
relation is also critical in understanding which time-series lags or leads the 
other or, in other words the direction and magnitude of the difference.   



However, when using circular statistics the mean phase angle or phase 
difference is relative to an arbitrary reference or starting point which is 
difficult to define with spontaneous EEG.   Spontaneous EEG is perfectly 
useful because subjects are alert and holding themselves still or with no 
motion as a reference and the magnitude and direction of a shift in phase 
angle is all that is relevant (see section 15). 
 
 The phase difference is defined as: 
 

))(cos(
))((

fpectrumSmoothed
fadspectrumSmoothedqu  Eq. 19 -  Phase difference (f) = Arctan 

 
In the numerical example in Table II, 
 
Phase difference (or angle at 1.25 Hz) = Arctan 0.031/0.073 = 22.7o

 
  
 Two oscillators are frequency locked when the first derivative of the 
phase difference has a stable periodic orbit even if there is a difference in 
phase between the two oscillators.   Two oscillators are entrained when they 
are frequency locked in a 1:1 fashion with no phase difference.  Two 
oscillators are phase locked where there is a stable phase difference that is 
not 1:1 (e.g., 2:3).  Two oscillators are synchronized when they are phase 
locked independent of the absolute value of the phase difference, e.g., when 
the 1st derivative of the time series of phase ≈ 0.  Synchronization is in-phase 
when the phase difference = 0 and out-of-phase is when the phase difference 
≠ 0.  Two oscillators are said to be synchronized in anti-phase when the 
phase difference = 1800.  Frequency locking without phase locking is called 
phase trapping.   The relationship between all of these definitions is depicted 
in figure 9. 
 



Fig. 9 – Various degrees and types of locking of oscillators.  From Izhikevich 
and Kuramoto, 2005). 
 
16 – What is Phase Resetting? 
 Coupled oscillators often drift apart in their phase relationship and a 
synchronizing pulse can shift the phase of one or both of the oscillations so 
that they are again in phase or phase locked for a period of time (Pikovsky et 
al, 2003).  Synchrony is defined as “an adjustment of rhythms of self-
sustaining oscillators due to their weak interactions” (Pikovsky et al, 2003).   
Phase reset marks the onset of phase locking.   Phase locking and the term 
“entrainment” are synonymous.   The amount of phase resetting per unit 
time is depicted by phase reset curves or PRC = (new phase – old phase).   
Positive values of the PRC correspond to phase angle advances, negative 
values correspond to phase angle reductions.   Weak coupling typically 
exhibits a slow and smooth PRC whereas strong coupling between 
oscillators often results in abrupt or a discontinuous PRC.    A useful method 
to measure phase resetting is by computing the first derivative of the time 
series of phase difference on the y-axis and time on the x-axis.  A significant 
positive or negative first derivative of the time series of phase differences 
represents the magnitude of phase resetting (the second derivative of the 
phase shift is also useful in this computation).  Phase reset is related to onset 
of phase synchrony or phase locking and the period of near zero 1st 
derivatives in time is an example of a homeostatic and stable dynamical 
system (Pikovsky et al, 2003; John, 2005). Two interesting properties of 



phase reset are that minimal energy is required to reset phase between 
weakly coupled oscillators and phase reset occurs independent of amplitude.  
In weakly coupled chaotic systems amplitude can vary randomly while 
phase locking is stable. 
 Phase reset is defined as a significant positive or negative first 
derivative of the time series of phase difference between two channels, i.e., 
d( tt ϕϕ ′− _/t > 0 or < 0.  Phase locked or phase synchrony is defined as that 
period of time where there is a stable near zero first derivative of the 
instantaneous phase difference between d( tt ϕϕ ′− _/t ≈ 0.   A high coherence 
value is related to extended periods of phase locking.   A significant positive 
first derivative of the time series of coherence marks the onset of phase 
locking and a significant negative first derivative of the time series of 
coherence marks the onset of phase dispersion over an interval of time.  The 
significance level can be determined by computing the means and standard 
deviations of the first derivative for each time series and then computing a Z 

score for each time point with alpha at P < .05 or 
SD

xu −Z =  where u = mean 

and x = the instantaneous first derivative at t and SD = standard deviation.   
For example, depending on the method of computation, values near zero st. 
dev. or < 1 st. dev may define the state of “Phase Locking”.   Values > 2 st. 
dev. may define the state of “Phase Transition” or “Phase Reset” (the alpha 
threshold is a matter of observation and test). 
 Figure ten illustrates the concept of phase reset.  Coherence is a 
measure of phase consistency or phase clustering on the unit circle as 
measured by the length of the unit vector r.   The illustration in figure 10 
shows that the resultant vector r1 = r2  and therefore coherence when 
averaged over time is constant even though there can be a shift in the phase  
 



Fig. 10 – Illustrations of phase reset.  Left is the unit circle in which there is a clustering 
of phase angles and thus high coherence as measured by the length of the unit vector r.  
The vector r1 = 450 occurs first in time and the vector r2 = 100 and 1350 occurs later in 
time.   The transition is between time point 4 and 5 where the 1st derivative is a 
maximum.  The right displays are a time series of the approximated 1st derivative of the 
instantaneous phase differences for the time series t1, t2, t3, t4 at mean phase angle = 450 
and t5,t6,t7, t8 at mean phase angle = 100.    Phase reset is defined as a significant negative 
or positive 1st derivative (y’ < 0 or y’ > 0).   The 1st derivative near zero is when there is 
phase locking or phase stability and little change over time.  The sign or direction of 
phase reset is arbitrary since two oscillating events are being brought into phase 
synchrony and represent a stable state as measured by EEG coherence independent of 
direction.   The clustering of stable phase relationships over long periods of time is more 
common than are the phase transitions. The phase transitions are time markers of the 
thalamo-cortical-limbic-reticular circuits of the brain (John, 2005; Thatcher and John, 
1977). 
 
angle (i.e., phase difference) that occurs during the summation and average 
of the computation of coherence. This illustrates the advantage of phase 
differences which are “instantaneous” and not a statistical average like 
coherence and a correlation coefficient.  Details for computing complex 
demodulation and instantaneous spectra are in Appendix-B. 
 As mentioned previously, an important property of phase reset is that 



it requires essentially zero energy to change the phase relationship between 
coupled oscillators and by this process rapidly create synchronized clusters 
of neural activity.  In addition to phase reset without any change in 
frequency or amplitude of the EEG spectrum is that it can also be  
independent of phase history.   That is, phase reset occurs independent of 
magnitude and direction of the phase difference that existed before the onset 
of the reset pulse (Kazantsev et al, 2004).  What is important in the 
computation of the first derivative of the time series of phase is the rate of 
change of phase over time and not the absolute magnitude of phase. 
 Figure 11 shows the relationship between phase differences using Cz 
as a reference and phase reset as measured by the 1st derivative of the phase 
difference time series. 

Fig. 11 – Example of phase difference time series with Cz as the reference (Top) and the  
1st derivative of the phase difference time series (Bottom) or phase reset.  Analyses were 
produced using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com 

 
 Figure 12 shows examples of phase synchrony or phase locking when 
the first derivative of the phase difference time series ≈ 0 and phase reset 

http://www.appliedneuroscience.com/


when the 1st derivative of the phase difference time series ≠ 0.   Global phase 
reset is defined as > 90% of the channels exhibiting simultaneous phase reset 
and local phase reset is defined as 1 or a few channels exhibiting phase reset.   
The intervals of time between phase reset are periods of phase synchrony. 
 

Figure 12 shows examples of phase synchrony or phase locking when the first derivative 
of the phase difference time series ≈ 0 and phase reset when the 1st derivative of the 
phase difference time series ≠ 0.   Global phase reset is defined as > 90% of the channels 
exhibiting simultaneous phase reset and local phase reset is defined as 1 or a few 
channels exhibiting phase reset.   The intervals of time between phase reset are periods of 
phase synchrony also called “phase locking”.  Analyses were produced using the 
NeuroGuide Lexicor demo from the download at www.appliedneuroscience.com 

 
     Figure 13 shows how to quantify phase reset by dissecting its two 
fundamental components, i.e., phase shift followed by phase locking. 

http://www.appliedneuroscience.com/


Fig. 13- Diagram of phase reset metrics.   Phase shift (PS) onset was defined at the time point when a 
significant 1st derivative occurred (≥ 50 /centisecond), phase shift duration (SD) was defined as the time 
from onset to offset of the phase shift and the phase synchrony interval (SI) was defined as the interval of 
time between the onset of a phase shift and the onset of a subsequent phase shift.  Phase reset (PR) is 
composed of two events: 1- a phase shift and 2- a period of synchrony following the phase shift where the 
1st derivative ≈ 0 or PR = SD + SI. (from Thatcher et al, 2008a; 2008b) 
 
 
17- How large should coherence be before Phase Difference can be 
regarded as stable?  
 As mentioned previously, the confidence internal for the estimation of 
the average phase angle between two time series is related to the magnitude 
of coherence.   When coherence is near unity then the oscillators are 
synchronized and phase and frequency locked.   This means that when 
coherence is too low, e.g., < 0.2, then the estimate of the average phase 
angle may not be stable and phase relationships could be non-linear and not 
synchronized or phase locked.   An example of a 30 degree phase angle 
using the NeuroGuide signal generation program is shown in figure 13: 
 
 
 



 

Fig. 13 shows an example of two 10 uV sine waves with the second sine wave shifted by 
30 degrees with increasing amounts of noise added to the signal in one channel (signal-
to-noise ratio).  The data is 60 seconds sampled at 128 Hz.(from Thatcher et al, 2004).  
Analyses were produced using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com. 
 
 
 



Fig – 14.   Top is coherence (y-axis) vs signal-to-noise ratio (x-axis).   Bottom is phase 
angle on the y-axis and signal-to-noise ratio on the x-axis.  Phase locking is minimal or 
absent when coherence is less than approximately 0.2 or 20%. 
 

Figure 14 (from Thatcher et al, 2004) shows increased variability of 
EEG phase angle or difference as noise is systematically added to the 30 
degree shifted sine wave.  Note that non-linear dynamical processes are 
suggested by the fact that the mean = 30 degrees when coherence < 0.2.  
Chaotic dynamics and reproducible correlations are often embedded in 
similar time data.  
 
 



Figure 15 – The x-axis are different ranges of coherence (x100).  The y-axis is the 
standard deviation of coherence (blue circles) and phase angles (pink squares).  The 
dashed vertical line shows the level of coherence (20% or 0.2) when the variance of the 
phase angle becomes very high.  High variance of the phase angle means that there is 
minimal or no phase locking. 

 
Figure 15 (from Thatcher et al, 2004) shows that EEG coherence 

linearly decreases as a function of the signal-to-noise ratio.   It can be seen 
that phase angles even with 248 degrees of freedom are instable and poorly 
estimated as coherence decreases.   EEG coherence at 0.2 or less is used as a 
cut-off for accepting phase as a valid and stable linear measure.  The 
instability of a non-linear system may be present because the mean phase 
angle = 30 degrees when coherence is less than 0.2, see Figure 14. 
 The test signals were computed using the NeuroGuide signal 
generation program and by systematically increasing the amount of white 
“noise” added to one of the channels used to compute coherence and phase 
angle.  In general, as the value of coherence decreases below approximately 
0.2 or 20% (i.e., coherence x100) then phase angles are extremely variable 
and unstable even using 248 degrees of freedom.   



 The calculations exceed what is possible using a hand held calculator, 
however, computer simulations can produce results much faster than a hand 
calculator.  The understanding of coherence and phase can be explored by 
any one who downloads the free NeuroGuide demo at: 
www.appliedneuroscience.com  and tests coherence and phase for 
themselves. 
 
18- Why the average reference and Laplacian fail to produce valid 

coherence and phase measures. 
 
 As pointed out by Nunez (1981) “The average reference method of 
EEG recording requires considerable caution in the interpretation of the 
resulting record” (p. 194) and that “The phase relationship between two 
electrodes is also ambiguous: (p. 195).   It is easy to understand why 
coherence and phase differences are invalid when using an average reference 
since the summation of signals from all channels is “subtracted” or ‘added’ 
to the electrical potentials recorded at each electrode.  Figure 16 below 
shows the results of the average reference where  noise and signal from each 
channel is incorporated into all of the channels by being “subtracted” from 
the electrical potential recorded from each channel.  Thus, signals and noise 
are mixed and added to the recordings from each channel making coherence 
and phase differences invalid.   A similar situation prevails with source 
derivation or the Laplacian reference (Figure 17) since spatially weighted 
signals and noise from other channels are averaged and subtracted from the 
electrical potential recorded from each electrode site.   Coherence when 
using the average reference or source derivation is especially sensitive to the 
presence of artifact or  noise since the artifact will be mixed with and added 
to all channels. 
 
 Figure 16 are the results of the computation of EEG coherence and 
EEG phase differences using the average reference EEG simulation.   The y-
axis in figure 16 (top) is coherence and the x-axis is the signal-to-noise ratio 
(S/N).   The y-axis in figure 16 (bottom) is phase difference (degrees) and 
the x-axis is the same signal-to-noise ratio (S/N) as in figure 14.     It can be 
seen in Figure 16 that coherence is extremely variable and does not decrease 
as a linear function of signal-to-noise ratio.   It can also be seen in Figure 16 
that EEG phase differences never approximate 30 degrees and are extremely 
variable at all levels of noise. 
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Fig – 16.   Top is coherence (y-axis) vs signal-to-noise ratio (x-axis).  Coherence drops off 
Rapidly and is invalid.   Bottom is phase angle on the y-axis and signal-to-noise ratio on 
the x-axis.  Phase locking is minimal or absent and unstable throughout the entire  
simulation and fails to exhibit the 30 degree phase difference.     
 

 Figure 17 are the results of the computation of EEG coherence and 
EEG phase differences using the Laplacian reference EEG simulation.   The 
y-axis in figure 17 (top) is coherence and the x-axis is the signal-to-noise 
ratio (S/N).   The y-axis in figure 17 (bottom) is phase difference (degrees) 
and the x-axis is the same signal-to-noise ratio (S/N) as in figure 14.     It can 
be seen in Figure 17 that coherence is extremely variable and does not 
decrease as a linear function of signal-to-noise ratio.   It can also be seen in 
Figure 17 that EEG phase differences are invalid and never approximate 30 
degrees with high variance at all levels of noise. 
 



 
Fig – 17.   Top is coherence (y-axis) vs signal-to-noise ratio (x-axis).  Coherence drops off 
Rapidly and is invalid.   Bottom is phase angle on the y-axis and signal-to-noise ratio on 
the x-axis.  Phase locking is minimal or absent and unstable throughout the entire  

simulation and fails to exhibit the 30 degree phase difference.     

 

 The results of these analyses are consistent with those by 
Rappelsberger, 1989 who emphasized the value and validity of using a 
single reference and linked ears in estimating the magnitude of shared or 
coupled activity between two scalp electrodes.   The use of re-montage 
methods such as the average reference and Laplacian source derivation are 
useful in helping to determine the location of the sources of EEG of different 
amplitudes at different locations.  However, the results of this study which 
again confirm the findings of Rappelsberger and Petsche, 1988 
and Rappelsberger, 1989 which showed that coherence is invalid when using 
either an average reference or the Laplacian source derivation.  This same 
conclusion was also demonstrated by Korzeniewska, et al (2003).  
 The distortion of phase differences by an average reference and the 
Laplacian transform are also easy to demonstrate by using calibrated sine 
waves.  For example, in NeuroGuide click File > Open > Signal Generation 
and then create a sine wave at Fp1 of 5 Hz and 100 uV with zero phase shift, 



Fp2 of 5 Hz and 100 uV with 20 deg phase shift; F3 of 5 Hz and 100 uV 
with 40 deg phase shift; F4 of 5 Hz and 100 uV with 60 deg phase shift; C3 
of 5 Hz and 100 uV with 80 deg phase shift; C4 of 5 Hz and 100 uV with 
100 deg phase shift; P3 of 5 Hz and 100 uV with 120 deg phase shift; P4 of 
5 Hz and 100 uV with 140 deg phase shift; O1 of 5 Hz and 100 uV with 160 
deg phase shift and O2 of 5 Hz and 100 uV with 180 deg phase shift.   Allow 
the remainder of the nine channels (F7 to Pz) to remain at 0 uV and no phase 
shift.   Then click Ok, click cancel to the subject information panel and then 
click View > Dynamic JTFA > Absolute Phase.   Change the display time to 
3 second and depress the left mouse button over the traces and view the 
phase differences in the theta frequency band in the panel to the right (ignore 
the other frequency bands because they contain noise).   One will see a 
systematic increase of phase difference with respect to Fp1 with 20 degree 
increments in the theta frequency column, just like one would expect.   Now, 
double click the Average Reference montage in the montage window to the 
left of the edit screen and see how the phase differences are now distorted.  
Double click Laplacian in the montage window to the left of the edit screen 
and see how the phase differences are again distorted.   Figure 17b below 
compares the phase shift with respect to Fp1 using Linked Ears common 
reference (solid black line), the Average Reference (dashed blue line), and 
the Laplacian (dashed red line).   This is another demonstration of how a 
non-common reference like  
the the average reference and the Laplacian scramble phase differences and 
therefore caution should be used and only a common reference recording 
(any common reference and not just linked ears) is the only valid method of 
relating phase differences to the underlying neurophysiology, e.g., 
conduction velocities, synaptic rise times, directed coherence, phase reset, 
etc. 
 



Fig. 17b – Demonstration of distortions in phase differences in a test using 20 deg increments 
of phase difference with respect to Fp1.   The solid black line is using a Linked Ears common 
reference which accurately shows the step by step 20 deg. Increments in phase difference.   
The average reference (dashed blue line) and the Laplacian (dashed red line) significantly 
distort the phase differences.   
 
19- What is “Inflation” of Coherence (and correlation)? 
 Coherence inflation is defined as any value of coherence (x) greater 
than zero when coherence (or correlation) is computed using pure Gaussian 
noise in one of the two channels and a pure sine wave in the other channel.    
 
Eq. 20-      Coherence Inflation  x > 0  
 
This is the error term when one of the channels is pure Gaussian noise and  
the second channel is signal.   Any value of coherence > 0 is due to error 
attributable to low degrees of freedom, inadequate signal resolution or too 
short of measurement interval, or improper sample rates within that interval, 
etc.   



Figure 18 below shows an example of a 5 Hz 10uVsine wave in one 
channel and 100 uV (p-p) gaussian noise in the second channel.  The power 
spectrum of the two channels is shown in the upper right panel.  Figure 18 is 
just one example of the analyses performed by the NeuroGuide Signal 
Generator that directly test EEG simulated EEG cross-spectra. 

 

Figure 18.  Screen capture of the NeuroGuide signal generation program.  
Top trace is a 5 Hz 10 uV sine wave + 0 noise and the bottom trace is the 
mixture of a 5 Hz 10 uV sine wave + 100 uV Gaussian noise. 

 
 
20- What are the limits of EEG Correlation, Coherence and Phase 
Biofeedback 
 As explained above, correlation and coherence requires averaging of 
time series data points in order to converge to an accurate estimate of shared 
activity between two time series.   This means that correlation and 
coherence, unlike absolute power, are not instantaneous and always require 
time to compute.    The most important factors in EEG correlation and 



coherence biofeedback are: 1- The band width, 2- Sample rate and , 3- 
Interval of time over which Averaging occurs.     
 Band width is directly related to the number of degrees of freedom.   
The wider the band width, the larger the number of degrees of freedom.  
However, with increased band width then there is reduced frequency 
resolution.   In general, the standard band widths of EEG which are adequate 
such as  theta (4 – 7.5 Hz), Alpha (8 – 12 Hz), Beta (12.5 – 22 Hz) and 
Gamma (25 – 30 Hz), etc.   With narrow bandwidths, for example 0.5 Hz or 
1 Hz then coherence will equal unity unless there are sufficient degrees of 
freedom to resolve true “signals” in the brain, which in the case of the 
human scalp EEG a 1,000 Hz sample rate is more than adequate.   
 Figure 19 below shows the results of tests using mixtures of signal 
and noise as in Figure 11 in which mean coherence is the Y – Axis as a 
function of sample rate (i.e., 512 Hz top left, 256 top right, 128 bottom left 
& 64 Hz bottom right).   This figure will be replaced with a series of more 
clearly labeled figures in the next version of this paper.   For the moment, 
accept the fact that the amount of time for averaging on the X - axis (125 
msec., 250 msec., 500 msec. and 1,000 msec. results in lower coherence 
values, i.e., lower coherence inflation.   This test involved computing 
coherence between one channel of pure sine waves (10 uV p-p) at different 
frequencies (theta, alpha, beta & gamma) and a second channel with pure 
Gaussian noise (also 10 uV p-p).     It can be seen that the most important 
factor in determining coherence “Inflation” is the length of time for 
averaging.    1,000 msec. produces coherence = 0.1 (or 10%) inflation.  
Inflation is defined above as any value > 0 when pure Gaussian noise is in 
one of the channels.    500 msec produces coherence inflation = 0.2 (or 20%) 
inflation while 250 msec produces coherence inflation = 0.3 to 0.4 and 125 
msec = 0.5 to 0.6 inflation.    The coherence inflation is independent of band 
width, frequency and sample rate.   The only critical factor is the interval of 
time over which the average is computed, the longer the interval the lower 
the inflation.     
 The results of these analyses are that a minimum of a 500 millisecond 
difference is required when using EEG biofeedback in order to compute an 
accurate estimate of coherence or coupling between two time series.   With a 
500 millisecond average then the amount of inflation is relative low (e.g., 
0.2 or 20%) and as long as the same interval of time of averaging is used 
with a normative database, then the Z scores of real-time coherence will be 
valid and accurate.   As seen in Fig. 19 a sample rate of 1,000 produces even 
lower inflation, however, a 1 second difference between a brain event and 



the feedback signal may be too long for connection formation in a 
biofeedback setting. 
 

 
Figure 19.  Mean coherence (y-axis) and the integration window size in 
milliseconds (x-axis).   Top left is sample rate = 512 Hz, top right sample 
rate = 256 Hz, bottom left sample rate = 128 Hz and bottom left sample rate 
= 64 Hz.  The amount of averaging from 125 msec. to 1,000 msec is the 
critical variable in minimizing “inflation” and not the sample rate. 
 
 Figure 20 below is the same as figure 19, but contains the standard 
deviations.  A 500 msec. averaging delay = 0.15 standard deviation while 
1,000 msec = 0.1 standard deviation.     This figure shows that the choice of 
a 500 millisecond integration delay yields a reasonably stable estimate of 
coherence when using EEG biofeedback but that shorter intervals, such as 
125 msec or 250 msec produce high inflation and high standard deviations 
and will not provide a valid “feedback” signal and thus less averaging will 
likely reduce neurotherapy efficacy. 
 
 



Figure 20.  Standard deviations of coherence (y-axis) and the integration 
window size in milliseconds (x-axis).   Top left is sample rate = 512Hz, top 
right sample rate = 256 Hz, bottom left sample rate = 128 Hz and bottom left 
sample rate = 64 Hz. 
 
 
 EEG phase is not the same as coherence and it can be computed 
instantaneously without averaging.  Phase reset curves without averaging 
provide a detailed picture of the phase stability between coupled oscillators. 
Nonetheless, “instantaneous” phase is variable and it is advisable to average 
the phase angles over intervals of time if greater stability is required 
especially when using Z score biofeedback.   
 
20A - 19 Channel EEG Biofeedback 

This use of the EEG changed dramatically in the 1960s when computers 
were used to modify the EEG thru biofeedback, referred to today as 
Neurofeedback (NF).   Studies by Fox and Rudell (1968); Kamiya (1971) and 
Sterman (1973) were a dramatic departure from the classical use of conventional 
visual EEG and QEEG in that for the first time clinicians could consider treating a 
disorder such as epilepsy or attention deficit disorders and other mental disorders 



by using operant conditioning methods to modify the EEG itself.   Thus, QEEG 
and EEG Biofeedback have a “parent-child” relationship in that EEG Biofeedback 
necessarily uses computers and thus is a form of QEEG that is focused on 
treatment based on the science and knowledge of the physiological meaning and 
genesis of the EEG itself.  Ideally, as knowledge about brain function and the 
accuracy and resolution of the EEG increases, then EEG Biofeedback should 
change in lock step to better link symptoms and complaints to the brain and in this 
manner treat the patient based on solid science.    To the extent the EEG can be 
linked to functional systems in the brain and to specific mental disorders then EEG 
Biofeedback could “move” the brain toward a healthier state (i.e., “normalize” the 
brain) (Thatcher 1998; 1999).   Clearly, the clinical efficacy of EEG Biofeedback 
is reliant on knowledge about the genesis of the electroencephalogram and specific 
functions of the human brain.   The parent-child relationship and inter-
dependencies between QEEG and EEG Biofeedback is active today and represents 
a bond that when broken results in reduced clinical efficacy and general criticism 
of the field of EEG biofeedback.    The traditional and logical relationship between 
QEEG and NF is to use QEEG to assess and NF to treat based on a linkage 
between the patient’s symptoms and complaints and functional systems in the 
brain.     This parent/child linkage requires clinical competence on the one hand 
and technical competence with computers and the EEG on the other hand.   
Competence in both is essential and societies such as ISNR, SAN, ABEN, ECNS, 
BCIA, AAPB and other organization are available to help educate and test the 
requisite qualifications and competence to use EEG biofeedback.   The parent/child 
link is typically optimized by following three steps: 1- perform a careful and 
thorough clinical interview and assessment of the patient’s symptoms and 
complaints (neuropsychological assessments are the most desirable), 2- conduct a 
QEEG in order to link the patient’s symptoms and complaints to functional 
systems in the brain as evidenced in fMRI, PET and QEEG/MEG and, 3- devise a 
EEG biofeedback protocol to address the de-regulations observed in the QEEG 
assessment that best match the patient’s symptoms and complaints.    This 
approach reinforces the close bond between parent (QEEG) and child 
(Neurofeedback) and allows for the objective evaluation of the efficacy of 
treatment in terms of both behavior and brain function.   

Figure one illustrates a common modern quantitative EEG analysis where 
conventional EEG traces are viewed and examined at the same time that 
quantitative analyses are displayed so as to facilitate and extend the analytical 
power of the EEG.  Seamless integration of QEEG and Neurofeedback involves 
two basic steps: 1- visual examination of the EEG traces and 2- Spectral analyses 



3of the EEG traces .   Numerous studies have shown a relationship between the time 
domain and frequency domain of an EEG time series and LORETA 3-dimensional 
source analyses which provide 7 mm3 maximal spatial resolution in real-time 
(Pascual-Marqui et al, 1974; Gomez and Thatcher, 2001) (see footnote 6).     There 
is a verifiable correspondence between the time series of the EEG and the power 
spectrum and LORETA 3-dimensional source localization, for example, visual 
cortex source localization of hemiretinal visual stimulation, temporal lobe source 
localization of auditory simulation, theta source localization in the hippocampus in 
memory tasks, localization of theta in the anterior cingulate gyrus in attention 
tasks, linkage between depression and rostral and dorsal cingulate gyrus, etc.4   The 
number of clinical QEEG studies cited in the National Library of Medicine attests 
to the linkage between patient symptoms and functional systems in the brain and 
protocols for treatment are commonly guided by this scientific literature . 

 

Example of conventional digital EEG (left) and QEEG (right) on the same screen at the same time.   The 
conventional EEG includes examination and marking of EEG traces and events.   The QEEG (right) 
includes the Fast Fourier Transform (Top right) and normative database Z scores (Bottom right). 

 
                                                 
3 Spectral analysis includes space and time sequences that are transformed such as Joint-Time-Frequency-
Analysis, FFT and all other methods that decompose EEG energies at different frequencies in space and 
time. 



The Use of 19 Channel Surface QEEG Z Scores and EEG Biofeedback 
 As described by Thatcher and Lubar (2008), scientists at UCLA in the 
1950s (Adey et al, 1961) and later Matousek and Petersen (1973) were the 
first to compute means and standard deviations in different age groups and 
then Z scores to compare an individual to a reference normative database of 
means and standard deviations.   The Z statistic is defined as the difference 
between the value from an individual and the mean of the normal reference 
population divided by the standard deviation of the population.  John and 
colleagues (John, 1977; John et al, 1977; 1987) expanded on the use of the Z 
score and reference normal databases for clinical evaluation including the 
use of multivariate measures such as the Mahalanobis distance metric (John 
et al, 1987; John et al, 1988).   For purposes of assessing deviation from 
normal, the values of Z above and below the mean, which include 95% to 
99% of the area of the Z score distribution is often used as a level of 
confidence necessary to minimize Type I and Type II errors.   The standard-
score equation is also used to cross-validate a normative database which 
again emphasizes the importance of approximation to a Gaussian for any 
normative QEEG database (Thatcher et al, 2003). 
 The standard concepts underlying the Z score statistic and QEEG 
evaluations were recently combined to give rise to real-time EEG Z score 
biofeedback, also referred to as “Live Z Score Biofeedback” (Thatcher 
1998a; 1998b; 2000a; 2000b; Thatcher and Collura, 2006; Collura et al, 
2009).  The use of real-time Z score EEG biofeedback is another method to 
advance the integration of QEEG and Neurofeedback.   The figure below 
illustrates the differences between raw score EEG biofeedback and real-time 
Z score EEG biofeedback. 
 



 
Diagram of the difference between standard EEG biofeedback and Z score EEG 
biofeedback.   The top system involves standard EEG biofeedback that relies on raw EEG 
measures such as power, coherence, phase, amplitude asymmetries and power ratios and 
an arbitrary and subjective threshold value. The bottom system is the same as the top but 
with a transform of the raw scores to Z scores and thus a simplification of diverse metrics 
to a single metric of the Z score in which the threshold is mathematically defined as a 
movement toward Z = 0.   The magnitude of the Z score provides real-time feedback as to 
the distance between the patient’s EEG and the EEG values in an age matched sample of 
healthy normal control subjects. 

 

There are several advantages of real-time Z score biofeedback 
including: 1- Simplification by reducing different metrics (power, 
coherence, phase, asymmetry, etc.)  to a single common metric of the Z 
score; 2- Simplification by providing a threshold and direction of change 
i.e., Z = 0  to move the EEG toward a normal healthy reference population 
of subjects,4 and 3- improved linkage between patient’s complaints and 
symptoms and localization of functional systems in the brain.   The next 
three figures show examples of how a symptom check list and QEEG 
evaluation are linked to give rise to a neurofeedback protocol. 

                                                 
4 Simultaneous suppression of excessive theta and reinforcement of deficient beta is achieved by using a 
absolute Z score threshold, which is a simplification compared to standard raw score EEG biofeedback.   
For example, if the threshold is set to an absolute value of Z < 2, then  reduced theta amplitude and elevated 
beta amplitude will both be rewarded when the instantaneous EEG event exhibits a Z < 2  theta and beta 
power value.   



Example of a computer generated Symptom Check list in which the clinician first 
evaluates the patient’s symptoms and complaints using clinical and neuropsychological 
tools and then enters a score of 0 to 10 based on the severity of the symptoms.   
Hypotheses as to the most likely scalp locations and brain systems are then formed based 
on the scientific literature that links symptoms and complaints to the locations of 
functional specialization. (From NeuroGuide 2.5.7) 

 

Modules or “Hubs” are linked to various basic functional systems that 
are involved in cognition and perception (Hagmann et al, 2009; Chen et al, 
2008; He et al, 2009).   Recent neuroimaging studies show that all of the 
various “modules” are dynamically linked and interactive and that sub-sets 
of neural groups in different modules “bind” together for brief periods of 
time to mediate a given function (Sauseng,  and Klimesch, 2008, Thatcher et 
al, 2008a; 2008b).    An illustration of Brodmann areas and electrodes as 
they relate to functional systems is shown in the figure below. 



Example of Brodmann areas as they relate to various general functions and “Hubs” or 
“Modules” and scalp electrode locations that “sense” electrical activity generated by 
various functional systems. 

 

The linkage of a patient’s symptoms and complaints to the 
localization of functional systems in the brain is based on the accumulated 
scientific and clinical literature from QEEG, MEG, fMRI, PET and SPECT 
studies conducted over the last few decades as well as the basic neurological 
and neuropsychological lesion literature.  The Russian neuropsychologist 
Alexandra Luria (1973) and the American neuropsychologist Hans-Lukas 
Teuber (1968) are among the leading scientists to make important linkages 
between symptoms and complaints and localization of functional systems in 
the brain.   The integration of QEEG and EEG biofeedback relies upon such 
linkages as the initial stage in the formation of neurofeedback protocols as 
illustrated in the figures in this section.  The idea is to first produce 
hypotheses about likely linkages between a patient’s symptoms and 
complaints and the location of functional systems based on the scientific 
literature prior to conducting a QEEG.   Step two is to confirm or disconfirm 
the linkage by evaluating brain locations of deviations from normal using 



QEEG and LORETA 3-dimensional imaging and step three is to produce a 
biofeedback protocol based on the match between hypothesized locations 
and the QEEG and/or LORETA evaluation.   Luria (1973) emphasized that 
de-regulation of neural populations is reflected by reduced homeostatic 
balance in the brain in which symptoms are represented as “loss of function” 
that are often accompanied by “compensatory” processes.   One goal of the 
linkage of QEEG and neurofeedback is to identify and contrast the weak or 
“loss of function” components in the EEG from the compensatory processes 
where the weak systems are the initial target of the EEG biofeedback 
protocol.    

Flow diagram of individualized protocol design based on linkage of patient’s symptoms 
and complaints with surface QEEG Z scores and LORETA Z scores.  The columns of the 
matrix are the 19 channels of the 10/20 International electrode sites and the rows are 
symptoms and QEEG EEG features.    Hypotheses are formed as to the most likely 
electrode site locations associated with a given symptom and complaint based on the 
scientific literature.   The hypotheses are then tested based on QEEG and LORETA Z 
scores.   Weak systems representing “loss of function” are identified when there is a 
match of QEEG Z scores  with the hypothesized scalp locations based on symptoms.  
Compensatory locations are identified by a mismatch between hypothesized symptoms 
and complaints and the locations of observed QEEG Z scores.   A suggested 



neurofeedback protocol is then produced based on the locations of the “weak” systems.   

 

 Figure below is an example of a 19 channel surface EEG biofeedback 
setup screen in Neuroguide where users can select a wide variety of 
measures or metrics all reduced to the single metric of the Z score.   This 
includes, power, coherence, phase differences, amplitude asymmetries, 
power ratios and the average reference and Laplacian montages.   19 
channels is a minimum number of channels in order to compute accurate 
average references and the Laplacian montage which is an estimate of the 
current density vectors that course at right angles thru the skull. 

 
Example of 19 channel surface EEG Z score biofeedback setup screen inside of 
Neuroguide. 

 

 Multiple frequencies and multiple metrics may be selected in which a 
threshold must be reached before a visual and/or auditory reward is given 
(e.g., Z < 2.0).   The 19 channel Z score approach provides for seamless 
integration of QEEG assessment and 19 channel Z score neurofeedback or 
treatment.    Because there are approximately 8,000 possible instantaneous Z 



scores, it is important to limit and structure the biofeedback protocol in a 
manner that best links to the patient’s symptoms and complaints.  The 
linkage of patient’s symptoms and complaints as hypotheses that are 
confirmed or disconfirmed by QEEG assessment are used to develop a 
neurofeedback protocol.   Blind and random selection of Z score metrics 
runs the risk of altering “compensatory” systems and not focusing on the 
weak or “loss of function” systems that are linked to the patient’s symptoms 
and complaints. 
 The figure below shows an example of a simple 10/20 head display 
for feedback where the circles turn green when threshold is met (e.g., Z < 
2.0) and provides feedback about the scalp locations that are meeting 
threshold. 
 

 

 

Example of 19 channel feedback display.   The circles at a particular location turn green 
when threshold is reached, e.g., Z < 2.0  



 

 The figure below is an example of a progress monitoring chart that is 
displayed for the clinician during the course of biofeedback.   One strategy is 
to develop a protocol based on the linkage to the patient’s symptoms and 
complaints as discussed previously and then to set the Z score threshold so 
that it is easy for the subject to meet threshold and thus produce a high rate 
of successful ‘Hits’ or rewards.   Step two is to lower the threshold and make 
the feedback more difficult, e.g., Z < 1.5 and as the patient or client gains 
control and receives a high rate of reinforcement to again the lower the 
threshold, e.g., Z < 1.0 in a “shaping” process in which operant conditioning 
is used to move the patient’s brain metrics toward the center of the normal 
reference population or Z = 0.   

Example of one of the progress charts that a clinician views during the course of 
neurofeedback.  The idea is to shape the patient’s brain toward the center of the normal 
healthy reference population where Z = 0.   Initially the threshold is set so that the patient 
receives a high rate of reinforcement, e.g., Z < 2.0, then to lower the threshold and make it 
more difficult, e.g., Z < 1.5 and then as the patient again receives a high rate of 
reinforcement to again lower the threshold, e.g., Z < 1.0 so as to shape the brain dynamics 
using a standard operant conditioning procedure. 



 

NeuroImaging Neurofeedback or Real-Time LORETA Z Score 
Biofeedback 

Improved accuracy in the linkage between a patient’s symptoms and 
complaints and the localization of functional systems can be achieved by the 
biofeedback of real-time 3-dimensional locations or voxels in the brain.   
This method has been successfully implemented with functional MRI (i.e., 
fMRI) for chronic pain, obsessive compulsive disorders and anxiety 
disorders (Apkarian, 1999; Yoo et al, 2006; Weiskopf et al, 2003; Cairia et 
al, 2006; Bray et al, 2007; de Charms et al, 2004; de Charms, 2008).   The 
figure below shows an example of fMRI biofeedback displays  

Information from individual spatial points can be segregated into multiple anatomically 
defined three-dimensional regions of interest. Here the activation levels (represented as 
colours) of three brain regions are rendered on a translucent ‘glass brain’ view. (d) -
Activation in these regions can either be plotted second-by-second in real time or can be 
presented to subjects in more abstract forms, such as this virtual-reality video display of a 
beach bonfire, in which each of the three elements of the flickering fire corresponds to 
activation in a particular brain region. Brain activation can control arbitrarily complex 
elements of computer-generated scenarios. (From de Charms, 2008). 

 

However, fMRI biofeedback also referred to as Neuroimaging 
Therapy has several significant limitations in comparison to LORETA 3-
dimensional EEG biofeedback5: 1- A long time delay between a change in 
localized brain activity and the feedback signal, e.g., 20 seconds to minutes 
for fMRI while LORETA EEG biofeedback signals involve millisecond 

                                                 
5 LORETA means “Low Resolution Electromagnetic Tomography” (Pascual-Marqui et al, 1994).   Since 
the inception of this method in 1994 there have been over 500 peer reviewed publications (see 
http://www.uzh.ch/keyinst/NewLORETA/QuoteLORETA/PapersThatQuoteLORETA05.htm for a partial 
listing of this literature). 



delays; 2- fMRI only provides indirect measures of neural activity because 
blood flow changes are delayed and secondary to changes in neural activity 
whereas EEG biofeedback is a direct measure of neural electrical activity 
and, 3- Expense in which fMRI costs 3 million dollars for the MRI machine 
plus $30,000 per month for liquid helium whereas EEG biofeedback 
equipment and maintenance costs are less than $10,000.  The spatial 
resolution of LORETA source localization is approximately 7 mm3 which is 
comparable to the spatial resolution of fMRI.6   fMRI, however, offers the 
advantage of imaging of non-cortical structures such as the striatum, 
thalamus, cerebellum and other brain regions where as QEEG is limited to 
imaging of cortical dipoles produced by pyramidal cells.   Nonetheless, even 
with this limitation several studies have proven that biofeedback using 
LORETA real-time 3-dimensional sources is feasible and results in positive 
clinical outcomes (Lubar et al, 2003; Cannon et al, 2005; 2006a; 2006b; 
2007; 2008).   The next two figures shows examples of LORETA EEG 
biofeedback of the anterior cingulate gyrus and corresponding increases in 
current density as a function of biofeedback sessions. 

 

 Raw current source density values from 
Anterior Cingulate gyrus (ACC) activation 
in EEG Neuroimage Neurofeedback.   
Subjects viewed a bar graph and were 
instructed to increase the height of bar 
graph which was coupled to an increase in 
the real-time current source density of the 
ACC (14-18 Hz) in the intra-cranial region 
of seven voxels3 (ROI). From Cannon et al, 
2006a 

 
 

                                                 
6 The voxel resolution of LORETA is 7 mm3 which is adequate spatial resolution because the Brodmann 
areas are much greater in volume than 7 mm3.  Also, the biological resolution of functional MRI may be 
worse than LORETA because it depends on the vascular architecture of the brain.  For example, Ozcan et 
al (2005) showed that maximal fMRI spatial resolution is > 12 mm3. 
 



 
Increase in current density (14–18 Hz) from three different ROIs, resulting from training 
of the Anterior Cingulate gyrus (AC).  LPFC = left pre-frontal cortex; RPFC = right pre-
frontal cortex. The AC appears to influence increases in the LPFC & RPFC higher than 
the increase for itself although all three ROIs increased current density as a function of 
training.   Corresponding improvements in working memory and attention were also 
measured.  From Cannon et al, 2009. 
 
 
21 – Coherence, Phase and Circular Statistics 
 Phase angle has an intrinsic discontinuity, for example consider the 
linear and circular distributions of 360 equidistant points.  In the linear 
distribution 0 and 360 are at opposite ends while in the circular distribution   
00 = 3600 (Jammalamadaka and SenGupta, 2001).   To evaluate phase angles 
it is necessary to use vector algebra and compute a mean vector with 
magnitude or length r, and a direction Θ and to calculate the average x and y 
components of the mean vector: 
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where n is the number of observations and αi is the ith observation.   
 

The length or magnitude of the mean vector is: 
 

22 yxr +=  Eq. 23 -   
 
And the vector mean direction is: 
 

( )yx /arctan=Θ  Eq. 24 -  
 
 The magnitude of the mean vector gives an indication of the relative 
dispersion or coherence of the observations.   The range of r is 0.0 to  1.0.  If 
the phase angles or differences are clustered or clumped together in one 
direction then r will approximate 1.  If the phase differences are random over 
the interval, then r will be small and approximate 0.   The statistical 
computation of the cross-spectral “atoms” provides a complete description 
of the EEG phase locking, synchrony and phase angles (also phase resetting 
if differences or derivatives as a function of time are used). 
 
Eq. 25 - Angular variance: s2 = 2(1-r) 
 
 This is equivalent to variance in linear statistics. 
 
Eq. 26 - Angular deviation: s = 2(1-r)1/2 
 
 This is equivalent to standard deviation in linear statistics. 
 



Fig. 21 – Circular synchronization index.  r = magnitude of coherence 
 
 
22 – Phase straightening 
 As mentioned previously phase angle has an intrinsic discontinuity, 
where 0 and 360 are at opposite ends while in the circular distribution   00 = 
3600 (Jammalamadaka and SenGupta, 2001).   A method to remove 
discontinuities due to the mathematical limit of the arctangent is a procedure 
called “phase straightening” by Otnes and Enochnson (1972, p. 238).   The 
procedure involves checking for a large jump which happens when the phase 
goes from + 1800 to – 1800 and then adding or subtracting 3600 depending 
on the direction of sign change.  For example, Δθ = (180 – ε)0 + (180 – ε)0 = 
3600 - 2ε which is the same as 2ε since -(180 – ε)0 = 180 + ε.   This 
procedure results in phase being a smooth function of time or frequency and 
removes the discontinuities.  The programmer needs only to keep track of 
the number of winds around the circle also called the “winding number” if 
absolute phase differences are needed. 
 



Fig. 22 – Illustration of phase straightening where the change or discontinuity from – 1800 to + 
1800 is removed by adding or subtracting 3600 depending on the direction of change (adapted 
from Otnes and Enochson, 1972). 
 
Phase straightening is important when computing the first and second 
derivatives of the time series of phase differences because the discontinuity 
between – 1800 to + 1800 can produce artifacts.  All of the derivatives and 
phase reset measures in this paper were computed after phase straightening 
in order to avoid possible artifact. 
 
23 – EEG Spindles and Burst Activity 
 The human Electroencephalogram is characterized by electrical events 
that have a specific shape and physiological origin called “spindles” or 
“burst activity”.   A spindle is defined as a rhythmic and sequential build up 
of EEG amplitudes that wax and wane and appears as an “envelope” 
structure.   Spindles are also referred to as augmenting and recruiting 
responses (Steriade, 1995).   Spindles are especially prevalent during late 
drowsiness and sleep, however, spindles also occur during waking and 
focused attention.    In animal studies spindle like responses referred to as 



“augmenting responses” can be produced by thalamic stimulation and 
involve activation of the upper layers of the cortex and are typically negative 
in polarity as the first event in the sequential build up of voltages.   
“Recruiting responses” also have a spindle like structure but the first wave is 
positive in polarity at the scalp surface and involves activation of the lower 
layers of the cortex (Steriade, 1995).   Both augmenting and recruiting 
responses exhibit the same spindle like “envelope” shape but have different 
initial polarities and are not easy to distinguish in the human EEG record.  
For this reason, Steriade (1995) recommends that one refer to all spindles as 
“augmenting responses”.    
 There are several methods that are used to quantify “spindle” or 
augmenting response structure such as the inter-spindle interval, spindle 
peak amplitude and spindle duration.    Figure 23 shows an example of how 
NeuroGuide quantifies spindle activity using JTFA and the time series of 
instantaneous spectral measures (go to www.appliedneuroscience.com down 
load the free demo). 
 

Fig. 23 – Top are simulated spindles and bottom is the time series of the instantaneous 
power of the spindles.   Quantitative measures of spindle duration, intensity and average 
inter-spindle intervals are computed.   The Full Width Half Maximum (FWHM) is a 

http://www.appliedneuroscience.com/


measure of the area under the curve and is also a measure of the duration of the spindle or 
“burst” activity. Example produced using NeuroGuide demo software from 
www.appliedneuroscience.com. 
 
 
24 – The Bi-Spectrum and Bi-Coherence and Bi-Phase Difference 
 Another method to quantify burst activity and brain connectivity as it 
relates to bursts is the Bi-Spectrum which is divided into auto-channel cross-
frequency (single channels different frequencies) and cross-channel cross-
frequency (different frequencies in different channels).  There are several 
different definitions of the Bi-Spectrum.  One is by Hasselman et al, (1963) 
as the 3rd moment statistical property called “skewness” which was used to 
detect nonlinear interacting ocean waves.  Brillinger and Rosenblatt (1967) 
elaborated and described the computation of the tri-spectrum as the 4th 
power statistical moment or “kurtosis”.     The application of this definition 
of bi-spectra is purely statistical and it is primarily used to detect non-
linearities.   The second definition of bi-spectra is by Bendat and Pearsol 
(1980) in which bi-spectra are produced by partial-coherence analyses in 
order to isolate the covariances between different frequencies and locations.     
The bi-spectrum using partial-coherence is a measure of the association 
between different frequencies and different inputs, for example, a measure 
of the phase consistency and the phase difference between theta and beta 
frequencies (Helbig et al, 2006).  Witte et al (1997) and Helbig et al (2006) 
provide detailed time-series analysis and mathematics of the bi-spectrum, bi-
amplitude, bi-coherence and phase bi-coherence.   In the present paper we 
use the Bendat and Piersol (1980) approach to bi-spectra and bi-coherence to 
develop measures of coherence and phase differences between different 
frequencies within a single channel (auto bi-coherence and bi-phase) and the 
correlation between frequencies in different EEG channels or sensors (cross 
bi-coherence and cross bi-phase).    

To calculate bi-coherence, it is necessary to multiply two complex 
domain transforms of the digital time series to obtain a 3rd order transform 
and because of the linearity of the transforms and the need for real-time 
computations we transform each instant of time for Xt to the complex 
domain by multiplying a time series by a sine and cosine sine wave at a 
specific center frequency and band width followed by low-pass filtering.   
This well established signal processing method is called “complex 
demodulation” (Otnes and Enochson, 1972) and is equivalent to a Hilbert 
transform that refer to it as a complex demodulation transform or “CDF” 
where each time point is represented as a point on the unit circle 0 to 2pi.  



This is an instantaneous cosine and sine representation of a time series from 
which the time series of the “cospectrum” and “quadspectrum” are 
computed from the cross-spectrum (see Appendix B for the mathematical 
details of complex demodulation).   As described in section 9 the results of 
the CDF is the creation of a new real valued time series.   The CDF real 
valued time series is then used as the input to spectral analyses for the 
computation of bi-coherence and bi-phase. 
 
25- What is the physiological meaning of EEG Auto-Frequency 
Coherence (AFC) and Auto-Frequency Phase (AFP)? 
 Cross-channel Auto-Frequency Coherence and Auto-frequency phase 
measure the spatial and temporal relations between EEG “spindles” or “burst 
activity” and “rhythmic episodes” as well as the frequency structure of EEG 
bursts between two channels but at the same frequency (i.e., auto-
frequency).    Complex demodulation of a EEG time series at a given center 
frequency measures the instantaneous power (uV2) of activity at each instant 
of time in a frequency band, similar to a filter except that the time series is 
represented in the complex domain.    The frequency spectrum of “spindle 
activity” at a given frequency measures spindle duration and inter-spindle 
intervals or how common spindles are within a record and auto bi-coherence 
shows the phase synchrony of spindle activity at different frequencies within 
a channel.    Cross bi-coherence measures the phase synchrony of spindle or 
burst activity at the same or different frequency in different channels.  
     The FFT of the complex demodulation time series (x’t) computes the 
inter-burst frequency and average burst duration and burst rise times because 
x’t is the envelope of the spindle structure of EEG events.   For example, 
long duration bursts result in high power in the lower frequencies of the FFT 
spectrum.  Short inter-burst intervals result in high power at higher 
frequencies of the FFT spectrum.    
 



Fig. 24 – Top is filtered EEG at 25 – 30 Hz from F8 and reveals the burst structure of the 
EEG.   Bottom is the complex demodulation (JTFA) time series of instantaneous power 
at 25 – 30 Hz (x’t) and represents the integral or envelope of burst activity in the hi-beta 
frequency band.   Long duration bursts result in high spectral power in the lower 
frequencies and short inter-burst intervals result in high spectral power in the higher 
frequencies of the spectrum.  Analyses were produced using the NeuroGuide Lexicor 
demo from the download at www.appliedneuroscience.com 
 
  



Fig. 25 -  Top is the spontaneous EEG from O2.   Bottom is the complex demodulation 
(JTFA) time series (x’t) of the instantaneous power between 4 – 7 Hz.   Peaks in the 
JTFA time series represent integrations or the instantaneous envelope of burst activity in 
the theta frequency band.   Analyses were produced using the NeuroGuide Lexicor demo 
from the download at www.appliedneuroscience.com 
 
 



Fig. 26 -  Top is the spontaneous EEG from O2.   Bottom is the complex demodulation 
(JTFA) time series (x’t) of the instantaneous power between 25 - 30 Hz.   Peaks in the 
JTFA time series represent integrations or the instantaneous envelope of burst activity in 
the hi-beta frequency band.   Bi-coherence between the two JTFA time series in fig. 20 
and fig. 21 measure the phase synchrony of burst activity in the theta and beta frequency 
bands.  Bi-phase measures the average time differences between theta and beta burst 
activity.  Analyses were produced using the NeuroGuide Lexicor demo from the 
download at www.appliedneuroscience.com 
 
 



Fig. 27 – FFT analyses of the time series of instantaneous power over a 1 
minute interval of time in the theta and beta frequency bands. 
 
26- How to compute the Bi-Spectral Amplitude or Cross-Frequency 
Correlation 
 The simplest of the Bi-Spectral measures is the correlation or 
covariance of amplitude or power over time between different frequencies.  
For example, the covariance or correlation between amplitudes at 6 Hz 
(theta) and 15 Hz (beta) over time.   One simply computes the correlation 
coefficient in a matrix of m x n dimension where m = channels and n = 
frequency.   The diagonal of the matrix = 1 where the correlation is between 
the same channel and the same frequency.   In NeuroGuide the matrix is 
computed from 1 to 50 Hz at 1 Hz resolution and thus the matrix is 50 x 50 x 
171 electrode combinations (actually 171 + 19 [diagonal]  = 190).   The 
equation for this computation is the same as equation 2 used in the spectral 
correlation coefficient but expanded to include correlations between 
different frequencies. 
 
 



27-  How to compute Auto-channel Cross-Frequency Coherence (ACC) 
(same channel different frequencies) 

The procedure is: 
 
1- Transform the digital value of the EEG time series xt in channel X 

to a new time series x’t  by multiplying each time point by a sine 
wave at frequency 1 and a cosine wave at frequency 1.   Then, low 
pass filter and compute the square root of the sum of squares of the 
cospectrum and quadspectrum at each point of time to produce the 
new time series x’t  (see section 9). 

 
2- Transform the digital value of the EEG time series xt in channel X 

to a new time series x’’t by multiplying each time point by a sine 
wave at frequency 2 and a cosine wave at frequency 2.  Then low 
pass filter and then compute the square root of the sum of squares 
of the cospectrum and quadspectrum at each point of time to 
produce the new time series x’’t  (see section 9). 

 
3- Compute the coherence of the two time series x’t and x’’t from the 

same channel for the two frequencies 1 and 2 for each instant of 
time.    

 
28-  How to compute Cross-Channel Cross-Frequency Coherence 
(CCC) (different channels different frequencies). 

The procedure is: 
 
4- Transform the digital value of the EEG time series xt in channel X 

to a new time series x’t  by multiplying each time point by a sine 
wave at frequency 1 and a cosine wave at frequency 1.   Then, low 
pass filter and compute the square root of the sum of squares of the 
cospectrum and quadspectrum at each point of time to produce the 
new time series x’t  . 

 
5- Transform the digital value of the EEG time series yt in channel Y 

to a new time series y’t by multiplying each time point by a sine 
wave at frequency 2 and a cosine wave at frequency 2.  Then low 
pass filter and then compute the square root of the sum of squares 
of the cospectrum and quadspectrum at each point of time to 
produce the new time series x’t  . 

 



 
Auto-Channel Cross-Frequency Phase (ACFP) and Cross-Channel 

Cross-Frequency Phase (CCFP) are computed in the same manner as in 
previous sections by computing the arctangent of the ratio of the 
quadspectrum to the cospectrum at each moment of time for the two 
transformed phase difference time series. 
 

In summary, there are four categories of the bi-spectrum for the 
purposes of relating different frequencies: 1- Auto-Channel Auto-Frequency 
(AA), 2- Cross-Channel Auto-Frequency (CA), 3- Auto-Channel Cross-
Frequency (AC)  and 4- Cross-Channel Cross-Frequency (CC). 
 
29- Auto Channel Cross-Frequency Coherence (ACC) is defined as the 
square of the ratio of the cross-spectra within a single channel at two 
different frequencies divided by the product of the auto-spectra.  For 
example, the auto bi-spectrum between the EEG theta frequency (4 - 7 Hz) 
and the beta frequency band (25 – 30 Hz)  as recorded from electrode 
location F3.  To compute auto channel cross-frequency coherence one first 
transforms each time point to the complex domain using complex 
demodulation and then one computes the Fourier transform of the complex 
domain time series.   
 
 Eq. 27: 
 
Auto Cross-Frequency Coherence (ACC) (f1,f2) after complex demodulation 
(x’,y’) is defined as 
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Where x = frequency activity recorded from a single channel and x’ = 
frequency 1 and x’’ = frequency two recorded from the same channel.    N 
and the summation sign represents averaging over frequencies in the raw 
spectrogram or averaging replications of a given frequency or both.   The 
numerator and denominator of bi-coherence always refers to smoothed or 
averaged values, and, when there are N replications or N frequencies then 
each bi-coherence value has 2N degrees of freedom. 



 
30- Cross-Channel Cross-Frequency Coherence (CCC) is a measure of 
the phase consistency between two different frequencies recorded from two 
different locations.  For example, the phase consistency between theta (4-7 
Hz) and High Beta (20 – 40 Hz) EEG signals in two spatially separated 
channels F3 and F4 of the 10/20 system of EEG electrode location.   
 
Mathematically, the Cross-Channel Cross-Frequency Coherence (CCC) 
is defined as the ratio of the auto-spectra and cross-spectra for two 
channels, X and Y and two frequencies f1 and f2.  We again refer to the 
definitions of the cospectrum and the quadspectrum (see section 9) and then 
we define the cross bi-spectral coherence:  
 
 
Eq. = 28 
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Where x’ = channel 1 and y’ = channel 2, f1 = frequency 1 in channel 1 and 
f2 = frequency 2 in channel 2.    N and the summation sign represents 
averaging over frequencies in the raw spectrogram or averaging replications 
of a given frequency or both.   The numerator and denominator of bi-
coherence always refers to smoothed or averaged values, and, when there are 
N replications or N frequencies then each bi-coherence value has 2N degrees 
of freedom.   
 
31- Bi-Spectral Phase 
 
Bi-spectral phase difference is generically defined as: 
 
Eq. 29 –  
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Like bi-coherence there are two subdivisions of bi-spectral phase: 1- Auto 
Bi-spectral phase and 2- Cross Bi-spectral phase.   



 
32-  Auto-Channel Cross-Frequency Phase Difference (ACP) is a 
measure of the phase difference between two phase difference time series at 
two frequencies recorded from one location.      Phase difference between 
two time series and two frequencies is defined as a point on the unit circle 
and is represented in degrees or radians and is “normalized” with respect to 
frequency (i.e., independent of frequency because r = 1).  For example, a 
phase difference of 450 is the same for the standard EEG frequency bands of 
delta, theta, alpha, beta, gamma, etc.  Because of this fact and because of the 
physics of superposition of waves the bi-spectral phase measure is a useful 
measure of local generator signals that are coupled at different frequencies 
and exhibit bi-frequency phase locking.   The first and second derivatives of 
bi-frequency phase coupling are similar to the inter-coupling measures and 
are useful measures of  “transition states”  or bifurcation points and stability 
measures of homeostatic systems measured from a single location and given 
superposition of waves from many different locations. 
 
The equation for use with a hand calculator to compute Auto Bi-Spectral 
Phase (f1, f2)  or ACP is: 
 
Eq. 30 
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Where x’ = frequency 1 and x’’ = frequency two recorded from the same 
channel and N = number of time samples (for cospectrum and quadspectrum 
calculation see section 9).  
 
33- Cross-Channel Cross-Frequency Phase Difference (CCP) is a 
measure of the phase difference between two real valued phase difference 
time series at two frequencies recorded from two different locations.    This 
is an important measure of network dynamics and communication at 
different frequencies across space.   Because instantaneous phase is a scalar 
and a real number then the commutation properties of algebra hold and the 
use of the Fourier transform is valid to compute the arctangent of the 
quadspectrum and cospectrum.   Phase difference between two locations and 
two frequencies is defined as a point on the unit circle and is represented in 



degrees or radians and is “normalized” with respect to frequency (i.e., 
independent of frequency because r = 1).  For example, a phase difference of 
450  is the same for the standard EEG frequency bands of delta, theta, alpha, 
beta, gamma, etc.  Because of this fact and because of the physics of 
superposition of waves the bi-spectral phase measure is a useful measure of 
local and distant coupling by frequency and phase locking.   The first and 
second derivatives of bi-phase coupling are useful measures of  “transition 
states”  or bifurcation points and stability measures of homeostatic systems 
(similar to their application to phase reset described in section 9). 
 
The equation for use with a hand calculator to compute Cross Bi-Spectral 
Phase or CCP is: 
 
Eq. 31- 
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34- Coherence of Coherence 
 Defined as the average Coherence between two time series of 
instantaneous coherence for a pair of electrodes with a common reference.   
The importance of a common reference is because algebraic subtraction 
occurs only by virtue of a common reference whereas an average reference 
or a Laplacian reference mixes signals from all leads into each of the 
remaining leads thus eliminating valid and meaningful algebra.    A view of 
all pair wise combinations of “Coherence of Coherence” for 19 leads = 171 
combinations using Cz as the reference electrode is in Figure 28. 
 



Fig. 28 – Example of coherence of coherence for all 171 combinations of 19 
electrodes.  Analyses were produced using the NeuroGuide Lexicor demo from the 
download at www.appliedneuroscience.com 
 
35 – Phase Difference of Coherence 
  Defined as the average Phase difference of the time series of 
instantaneous coherence between any pair of electrodes with respect to a 
common electrode.   For example, the two time series of instantaneous 
coherence between Cz-P3 and Cz-P4 are the input to the phase analysis in 
which the average phase difference between the two time series of coherence 



exhibits statistically significant phase stability over time (i.e., significant 
coherence values).    An example of 19 leads = 171 combinations is in 
Figure 29. 
 

 
Fig. 29 – Example of phase difference of the time series of instantaneous 
coherence for all 171 combinations of 19 electrodes.  Analyses were 
produced using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com 
 
36 – Coherence of Phase Differences 
 Defined as the average Coherence of the time series of instantaneous 
phase differences between any pair of electrodes with respect to a common 



electrode.   For example, the two time series’s of instantaneous phase 
difference between Cz-P3 and Cz-P4 are the input of the coherence analysis 
in which coherence between the two time series of phase difference exhibits 
statistically significant phase stability over time (i.e., significant coherence 
values).    An example of 19 leads = 171 combinations is in Figure 30. 
 

 
Fig. 31 – Example of coherence of the time series of instantaneous phase 
differences for all 171 combinations of 19 electrodes.  Analyses were 
produced using the NeuroGuide Lexicor demo from the download at 



www.appliedneuroscience.com 

 
 
37 – Coherence Between Two Time Series of Phase Resets   
    Defined as the average Coherence of the First Derivative of the Time 
Series of Instantaneous Phase Differences (i.e., “Phase Reset”) between any 
pair of electrodes with respect to a common electrode.   For example, the 
two time series of phase resets for Cz-P3 and Cz-P4 are the input to the 
coherence analysis in which there is significant phase stability between the 
two time series of phase reset.   See section 15 for an explanation of phase 
reset.  An example of 19 leads = 171 combinations is in Figure 31. 
 



 
Fig. 31 – Example of coherence of the time series of instantaneous phase re-
set for all 171 combinations of 19 electrodes.  Analyses were produced 
using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com 
 
 
38 – Phase Difference Between Two Phase Difference Time Series 
 Defined as the average Phase difference of the Time Series of 
Instantaneous Phase Differences between two channels with respect to a 
common reference.   A map of all pair wise combinations (19 leads = 171 
combinations with respect to Cz) is useful to visualize the full manifold of 



relationships as defined by the phase difference of the time series of phase 
differences.  An example of 19 leads = 171 combinations is in Figure 32. 
 

 
Fig. 32 – Example of phase difference of the time series of instantaneous 
phase differences for all 171 combinations of 19 electrodes.  Analyses were 
produced using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com 
 



 
39 – Phase Difference of Phase Reset 
 Defined as the average phase difference of the First Derivative of the 
Time Series of Instantaneous Phase Differences (i.e., Phase Reset) between 
two electrode combinations referenced to a common reference as explained 
in section 34.  See section 15 for an explanation of phase reset.  An example 
of 19 leads = 171 combinations is in Figure 33. 
 

 



Fig. 33 – Example of phase differences of the time series of instantaneous 
phase re-set for all 171 combinations of 19 electrodes.  Analyses were 
produced using the NeuroGuide Lexicor demo from the download at 
www.appliedneuroscience.com 
 

 
40 – Bi-Spectral Cross-Frequency Power Correlations 
 A common method of evaluating bi-spectral relations is to compute 
the cross-frequency power correlation (Linas et al, 2005).    The method 
involves computing the covariance of power at each frequency bin with 
respect to all other frequency bins.   An example is shown for the cross-
frequency power correlations from 1 to 50 Hz in wakefulness, drowsiness 
and sleep in the same subject as shown in 
 

Fig. 34 – Example of bi-spectrum of cross-frequency power correlations 
from 1 to 50 Hz from Cz in the same subject but at different brain states, i.e., 
wakefulness, drowsy and sleep. 
 
41- Cross-Frequency Phase Synchrony or m:n Phase Synchronization 



 Cross-frequency phase synchrony is also called m:n phase 
synchronization (Schack et al, 2002; 2005).   Phase synchronization is the 
process by which two or more cyclic signals tend to oscillate with a 
repeating sequence of relative phase angles.  Phase synchronisation is 
usually applied to two waveforms of the same frequency with identical 
phase angles with each cycle. However it can be applied if there is an integer 
relationship of frequency, such that the cyclic signals share a repeating 
sequence of phase angles over consecutive cycles. These integer 
relationships are the so called Arnold Tongues which follow from 
bifurcation of the circle map” (www.wikipedia.org; Pikovsky et al, 2003). 

We mathematically define cross-frequency phase synchrony as the 
average Second Derivative of the instantaneous phase difference between 
different frequencies.   Different frequencies, e.g., 4 Hz vs. 7 Hz results in a 
continuum of changing phase differences and in beat frequencies (frequency 
mixing).    However, when the two frequencies are coupled and do not 
change over time (i.e., phase synchrony), then the first derivative of the 
phase difference between two different frequencies is constant.  That is, if 
two different frequencies are coupled over time then the 1st derivative is 
constant, although different depending on the difference in phase angle.   In 
order to measure phase synchrony across frequencies it is necessary to 
compute the 2nd derivative of the phase differences which = zero when there 
is phase synchrony.   That is, a constant first derivative results in a zero 2nd 
derivative.   Thus, the average 2nd derivative is a direct measure of cross-
frequency phase synchrony, because the lower the average 2nd derivative 
then the greater is phase synchrony across frequencies.   Figures 35 to 39 
illustrate the measure of cross-frequency phase synchrony and Figures 40 
and 41 are examples of cross-frequency phase shift duration and cross-
frequency phase lock duration. 
 



Fig. 35 – Example of 4 different frequencies and their phase relations.  
Instantaneous phase differences change at each moment of time. 
 



Fig. 36 – Example of a constant 1st derivative when different frequencies do 
not change their phase relationship over time. 
 



Fig. 37 – Example of a measure of cross-frequency phase synchrony which 
is defined as maximal when the 2nd derivative of the phase difference time 
series = 0 or the average 2nd derivative approximates zero.   The lower the 
average 2nd derivative then the greater is cross-frequency phase synchrony or 
n:m phase synchrony. 
 
 Figure 38 summarizes the important relationship between cross-
frequency phase locking and the constant phase differences and the 2nd 
derivative = 0. 
 



Fig. 38 – Illustrates the constant phase differences as a function of time when two 
different frequencies are phase locked.   Cross-frequency phase locking and cross-
frequency phase shift are measured by the 2nd derivative of instantaneous cross-frequency 
phase differences which = 0 when there is phase locking and is > 0 when there is a cross-
frequency phase shift. 
 
 Figure 39 illustrates the measures that are computed in order to 
quantify cross-frequency phase lock duration and cross-frequency phase 
shift duration in milliseconds.   The average magnitude of phase locking is 
directly related to the average magnitude of the 2nd derivative during the 
phase lock periods. 
 



Fig. 39- Illustration of how cross-frequency phase lock duration and cross-frequency 
phase shift duration are measured and quantified in milliseconds.    
 
Figure 40 shows an example of cross-frequency phase shift duration and 
figure 41 shows and example of cross-frequency phase lock duration in 
milliseconds for each cross-frequency coupling. 



Fig. 40- Example of cross-frequency phase lock duration (msec) of the EEG 
recorded from Fp1 with respect to the 18 remaining scalp electrodes.  This 
figure can be generated using the free NeuroGuide demo that can be 
downloaded at www.appliedneuroscience.com 
 



Fig. 41- Example of cross-frequency phase shift duration (msec) of the EEG 
recorded from Fp1 with respect to the 18 remaining scalp electrodes.  This 
figure can be generated using the free NeuroGuide demo that can be 
downloaded at www.appliedneuroscience.com 
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43- Appendix - A  
 
A.1 – Minimization of RMS Error 
  
 Time series are sequences, discrete or continuous, of quantitative data of specific 
moments in time.   They may be simple such as a single numerical observation at each 
moment of time and studied with respect to their distribution in time, or multiple in which 
case they consist of a number of separate quantities tabulated according to a common 
time base (e.g., a mixture of sine waves beginning at time = 0).   
 The statistics of a time series is the science of predicting an immediate or long 
time future sequence based on a sample of past sequential quantitative data.  In general, 
the longer the sample of past quantitative moments of time then the greater the accuracy 
of predicting future sequence(s).   
 The fine details of accuracy of prediction of the future based upon past samples is 
generally governed by the relationship of 1 / sq rt. of  N.   To understand why this is the 
case let us define a statistic of a  time series based on the “signal” or “message” that is 
transmitted and the “noise” or randomness that the signal is embedded in.   This 
relationship was described by the Nobel laureate Normbet Wiener (N. Wiener, Time 
Series, MIT Press, Cambridge, Mass., 1949) in which a time series is a combination of a 
signal + noise  or the signal f(t) and the message g(t)  + noise, where noise is defined as 
f(t) – g(t).   In other words noise is defined as the difference between the “message” and 
the measured quantitative values or  f(t) – g(t).  For example, noise  = 0 when f(t) – g(t) = 
0.   
 
 Let us consider the output of an electrical circuit with input f(t).  If the circuit has 
the response A (t) to a unit-step function, then the output is given by: 
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 The goal is to have F(t) approximate as closely as possible the message g(f).  That 
is, we want to minimize [F(t) – g(t)].   As a criterion  
 
 
 



  The Ergotic goal of time series statistics is to minimize the difference between the 
measured values f(t) and the “signal” g(t).  
 
The time series can be divided into two general categories: 1- the statistics of short-time 
biological data and other short-time interval events such as economic, sociological, etc. 
and 2- long time span events such as astronomical, meterological, geologic and 
geophysical data . . . . . . .   – to be continued 
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 Instantaneous Coherence and Phase Difference 

 Complex demodulation was used to compute instantaneous coherence and phase-
differences (Granger and Hatanaka, 1964; Otnes and Enochson, 1972; Bloomfield, 2000).   
This method first multiples a time series by the complex function of a sine and cosine at a 
particular frequency followed by a low pass filter which removes all but very low 
frequencies and transforms the time series into instantaneous amplitude and phase and an 
“instantaneous” spectrum (Bloomfield, 2000).  We place quotations around the term 
“instantaneous” to emphasize that there is always a trade-off between time resolution and 
frequency resolution.    The broader the band width the higher the time resolution but the 
lower the frequency resolution and vice versa (Bloomfield, 2000).  For example, if we 
multiply a time series {xt, t = 1, . . . , n} by sine ω0t and cos ω0t and then apply a low pass 
filter F, we have 
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and  is an estimate of the “instantaneous” amplitude of the 

frequency ω0 at time t and 
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′−1tan  is an estimate of the “instantaneous” phase at  

time t.    
 The instantaneous cross-spectrum is computed when there are two time series {yt, 
t = 1, . . . , n} and {y’t, t = 1, . . . , n} and if F [ ] is a filter passing only frequencies near 
zero, then, as above 
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time t and since 
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and likewise, 
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the instantaneous cross-spectrum is 
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and the instantaneous coherence is 
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however coherence is computed as the average of the sine and cosine functions over an 
interval of time or 
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The instantaneous phase-difference is tt ϕϕ ′−  which is also the arctan of the imaginary 
part of Vt divided by the real part (or the quadspectrum divided by the cospectrum).   
 
Computation of the First Derivatives of the Time Series of Coherence and Phase 
Angles 
 The first derivative of the time series of phase-differences between all pair wise 
combinations of two channels was computed in order to detect advancements and reset of 
phase-differences.  The Savitzgy-Golay procedure was used to compute the first 
derivatives of the time series using a window length of 3 time points and the polynomial 
degree of 2 (Press et al, 1994).    The units of the 1st derivative are in degrees/point which 
is normalized to degrees/second and degrees/millisecond in the case of EEG.  The second 
derivative was computed using a window length of 5 and a polynomial degree of 3 and is 
in units of degrees/second2 or degrees/millisecond2 in the case of EEG.   For simplicity, 
in NeuroGuide the units of the first derivative of a phase time series is degrees per 
centiseconds (i.e., degrees/cs2 = degrees/10 msec.2). 
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Listing of the Relevant Connectivity Equations.  All of the equations 
below can be evaluated using a hand calculator and the equations can 
be easily programmed by a competent programmer.  See the sections 
above for details.  The goal is to help develop standardization and 
simplification for the implementation of EEG connectivity measures: 
 
1- Pearson Product Correlation Coefficient 
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2-  The cospectrum and quadspectrum (see section 9): 
a(xf1) = cosine coefficient for the frequency (f1) for channel X 
b(xf1) = sine coefficient for the frequency (f1) for channel X 
u(yf2) = cosine coefficient for the frequency (f2) for channel Y 
v(yf2) = sine coefficient for the frequency (f2) for channel Y 
 
The cospectrum and quadspectrum are algebraically defined as: 
 
Cospectrum (f1,f2) = a(xf1) u(yf2) + b(xf1) v(yf2) 
 
Quadspectrum (f1,f2) = a(xf1) v(yf2) – b(xf1) u(yf2) 
 
3- Auto-spectrum 
 
F(x) = (a2 (x) + b2 (x)) 
 
4- The cross-spectrum amplitude: 
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5- Coherence 
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6- Phase Delay or phase difference 
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7- Auto Channel Cross-Frequency Coherence (f1,f2) (ACC) after 
complex demodulation:    
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8- Cross Channel Cross-Frequency Coherence (f1,f2) (CCC) for channels 
X and Y after complex demodulation  
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9- Auto Channel Cross-Frequency phase difference (f1, f2) (ACP) after 
complex demodulation 
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10- Cross-Channel Cross-Frequency Phase Difference (f1,f2) (CCP) after 
complex demodulation 
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Equations for sections 31 to 36 will be added in a future update. 
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