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1 - Introduction

Measurements of real-time and off-line electrodynamics of the human
brain have evolved over the years and one purpose of this paper is to provide
simple hand calculator equations to facilitate standardization and the
implementation of standardized methods. We begin with the fact that the
brain weighs approximately 2.5 pounds and consumes approximately 40% to
60% of blood glucose (Tryer, 1988) and consumes as much oxygen as our
muscles consume during active contraction, 24 hours a day. How is this
disproportionate amount of energy used? The answer is that it is used to
produce electricity including synchronized and collective actions of small
and large groups of neurons linked by axonal and dendritic connections.
Each neuron is like a dynamically oscillating battery that is continually
being recharged (Steriade, 1995). Locally connected neurons recruit
neighboring neurons with a sequential build up of electrical potential
referred to as the recruiting response and the augmenting response also
called EEG “burst activity” and “spindles” (Thatcher and John, 1977;
Steriade, 1995). EEG burst activity is recognized by spindle shaped waves
that wax and wane (i.e., augmenting by sequential build up then asymptote
and then decline to repeat as a waxing and waning pattern) are universal and
are present in delta (1 — 4 Hz) theta (4-7.5Hz), alpha (8 to 12 Hz), beta (12.5
Hz to 30 Hz) and gamma (30 Hz — 100 Hz) frequency bands during waking
in normal functioning people. Another fundamental fact is that only



synchronized cortical neurons produce the electricity called the
electroencephalogram and the generators are largely located near to the
electrode location with approximately 50% of the amplitude produced
directly beneath the recording electrode and approximately 95% within a 6
cm radius (Nunez, 1981; 1995). Unrelated distant sources produce lower
amplitude potentials by volume conduction that add or subtract at a zero
phase difference between the source and the surface sensors. Locally
synchronized neurons are connected to distant groups of neurons (3 cm to 21
cm) via cortico-cortical connections (Braitenberg, 1978; Schulz and
Braitenberg, 2002) and are connected to localized clusters or populations of
neurons that exhibit significant phase differences or delays due to axonal
conduction velocities, synaptic rise times, synaptic locations and other
neurophsyiological delays that can not be produced by volume conduction
which is defined at Phase Difference =0. Connectivity is defined as the
magnitude of coupling between neurons, independent of volume conduction.
This 1s because in this paper we are interested in the synchronous coupling
and de-coupling of local and long distance populations of neurons that add
together and give rise to the rhythmic patterns of the EEG seen at the scalp
surface (i.e., dynamic connectivity). Much has been learned about brain
function in the last few decades and EEG biofeedback to control robotic
limbs coupled with PET and fMRI cross-validation of the location of the
sources of the EEG shows that the future of quantitative EEG or QEEG is
very bright and positive because of the reality of the neurophysics of the
brain and high speed computers. 3-dimensional EEG source localization
methods have proliferated with ever increased spatial resolution and cross-
validation by fMRI, PET and SPECT. Understanding measurements of
coupling between populations of neurons in 3-dimensions using 3-
Dimensional Source analysis such as by Michael Scherg, Richard
Greenblatt, Mark Pflieger, Fuchs, Roberto Marqui-Pascual and others in the
last 20 years. An easily applied “Low Resolution Electromagnetic
Tomography” is one of the better localization methods although it does offer
resolutions of only 3 — 6 cm, but nonetheless, much better than the
alternative of zero 3-dimensional resolution that conventional EEG provides
Pascual-Marqui, 1999; Pascual-Marqui et al, 2001; Thatcher et al, 1994;
2005a; 2005b; 2006; Gomes and Thatcher, 2001). As emphasized by many,
it is critical to understand how widely distant regions of the brain
communicate before one can understand how the brain works. It is in
recognition of the importance of understanding brain connectivity especially
using explicit and step by step methods that the present paper was
undertaken. We attempt to use hand calculator simplicity when ever



possible and this is why the cospectrum and quadspectrum are in simple
notation such as a(x) or u(y) to represent different values that are added or
multiplied. The hand calculator equations in section 9 are important as a
reference for a programmer or a systems analysist to implement in a digital
computer and thereby provide testable standards and simplicity.

2- EEG Amplitude

Nunez (1994) estimated that 50% of the amplitude arises from directly
beneath the scalp electrode and approximately 95% is within a 6 cm
diameter. Cooper et al (1965) estimated that the minimal dipole surface
area necessary to generate a potential measurable from the scalp surface is 6
cm’” which is a circle with a diameter = 2.76 cm. However, the amplitude of
the EEG is not a simple matter of the total number of active neurons and
synapses near to the recording electrode. For example, volume conduction
and synchrony of generators are superimposed and mixed in the waves of
the EEG. Volume conduction approximates a gaussian spatial distribution
for a given point source and volume conduction of the electrical field occurs
at phase delay = 0 between any two recording points (limit speed of light)
(Feinmann, 1963). If there is a consistent and significant phase delay
between distant synchronous populations of neurons or sources, for example,
a consistent 30 degree phase at 6 to 28 cm, then this phase difference can not
be explained by volume conduction. Network properties are necessary to
explain the EEG findings. This emphasizes the importance of phase
differences between different EEG channels that are located at different
positions on the human scalp. A large phase difference can not be
explained by volume conduction and the stability of phase differences
influences the amplitude of the EEG as well. Mathematically, phase can
only be measured using complex numbers, however, we try with our hand
calculator equations to both explain this and make available simple
equations that use the cospectrum and quadspectrum (see page 23 section
10). However, it is important to note that complex numbers are necessary at
a fundamental level of physics in which the electrical field and quantum
mechanics both rely upon complex numbes and nature itself obeys the
algebra of complex numbers. One wonders if the physical laws of the
universe dictate the evolution of human mathematical invention? The
human mind tends to find and extend the laws of the universe by a recurrent
loop back on itself?

The importance of the synchrony of a small percentage of the synaptic
sources of EEG generators is far greater than the total number of generators.
For example, Nunez (1981; 1994) and Lopes da Silva (1994) have shown



that the total population of synaptic generators of the EEG are the
summation of : 1- a synchronous generator (M) compartment and, 2- an
asynchronous generator (N) compartment in which the relative contribution

to the amplitude of the EEGis A= M \/W . This means that synchronous
generators contribute much more to the amplitude of EEG than
asynchronous generators. For example, assume 10’ total generators in
which 10% of the generators are synchronous or M =1 x 10* and N =9 x

10* then EEG amplitude = 10°+/9x10* , or in other words, a 10% change in
the number of synchronous generators results in a 33 fold increase in EEG
amplitude (Lopez da Silva, 1994). Blood flow studies of intelligence often
report less blood flow changes in high 1.Q. groups compared to lower 1.Q.
subjects (Haier et al, 1992; Haier and Benbow, 1995; Jausovec and
Jausovec, 2003). Cerebral blood flow is generally related to the total
number of active neurons integrated over time, e.g., 1 — 20 minutes
(Yarowsky et al, 1983: 1985; Herscovitch, 1994). In contrast, EEG
amplitude as described above is influenced by the number of synchronous
generators much more than by the total number of generators and this may
be why high I.Q. subjects while generating more synchronous source current
than low 1.Q. subjects often fail to show greater cerebral blood flow
(Thatcher et al, 2006).

3- What is Volume Conduction and Connectivity?

The EEG has a dual personality. One personality is the electrical
fields of the brain which operate at the speed of light where dipoles
distributed in space turn on and off and oscillate at different amplitudes and
frequencies. Paul Nunez’s book “Electrical Fields of the Brain”, Oxford
Univ. Press, 1981 is an excellent text especially in regard to the electrical
personality of the EEG. The other personality of the EEG is the source of
the electrical activity which is an excitable medium, much like a forest fire
in which the fuel at the leading edge of the fire results in a traveling wave
with ashes left behind representing a long duration refractory period.
Hodkin and Huxley wrote the fundamental excitable medium equations of
the brain in 1952 for which they later received the Nobel prize. The
excitable medium of the brain are the axons, synapses, dendritic membranes
and ionic channels that behave like “kindling” at the leading edge of a
confluence of different fuels and excitations. As mentioned previously, the
majority of the cortex about 80% is excitatory with recurrent loop
connections yet there is no epilepsy in a healthy brain. How is such
stability possible with such an abundance of positive feedback? The answer



is because there are relatively long refractory periods (after action potentials
and after potentials) and this single property is largely responsible for the
self-organizational stability of the neocortex. Given this introduction,
“EEG Connectivity” is a property of the “networks of the brain” of axons,
synaptic rise and fall times and burst durations of neurons and is defined by
the magnitude of coupling between neurons. Magnitude is typically defined
by the strength, duration and time delays as measured by electrical recording
of the electrical fields of the brain produced by networks in the brain.
Connectivity does not occur at the speed of light and is best measured when
there are time delays, in fact, volume conduction of electricity is not a
property of a network and although it occurs at zero time delay non-volume
conduction zero phase delay through the central synchronization of the
thalamus can produce wide spread zero phase delays which are not due to
volume conducton. This important property of the network sources of the
EEG versus the electrical properties means that time delays determine
whether or not and to the extent that a network is responsible for the
electrical potentials measured at the scalp surface. Volume conduction
defined at zero phase lag is the electrical personality and lagged correlations
is the network personality of EEG.

Coupled oscillators in an excitable medium are the topic of this paper
starting with the genesis of the electrical potentials being ionic fluxes across
polarized membranes of neurons with intrinsic rhythms and driven rhythms
(self-sustained oscillations) as described by Steriade (1995) and Nunez
(1981; 1994).

Electrical events occur inside of the human body which is made up of
3-dimensional structures like membranes, skin and tissues that have volume.
Electrical currents spread nearly instantaneously throughout any volume.
Because of the physics of conservation there is a balance between negative
and positive potentials at each moment of time with slight delays near to the
speed of light (Feynmann, 1963). Sudden synchronous synaptic potentials
on the dentrites of a cortical pyramidal cell result in a change in the
amplitude of the local electrical potential referred to as an “Equivalent
Dipole”. Depending on the solid angle between the source and the sensor
(i.e., electrode) the polarity and shape of the electrical potential is different.
Volume conduction involves near zero phase delays between any two points
within the electrical field as collections of dipoles oscillate in time (Nunez,
1981). As mentioned previously, zero phase delay is one of the important
properties of volume conduction and it is for this reason that measures such
as the cross-spectrum, coherence, bi-coherence and coherence of phase



delays are so critical in measuring brain connectivity independent of volume
conduction.

When separated generators exhibit a stable phase difference of, for
example, 30 degrees then this can not be explained by volume conduction.'
As will be explained in later sections correlation coefficient methods such as
the Pearson product correlation (e.g., “co-modulation” and “Lexicor
correlation”) do not compute phase and are therefore incapable of
controlling for volume conduction. The use of complex numbers and the
cross-spectrum is essential for studies of brain connectivity not only because
of the ability to control volume conduction but also because of the need to
measure the fine temporal details and temporal history of coupling or
“connectivity” within and between different regions of the brain.

Figure 1 is an illustration of the cross-spectrum of volume conduction
vs. connectivity in which a sine wave is generated inside a sphere with
sensors on the surface. The top shows the zero phase lag recordings of a
sine wave and illustrates volume conduction in which the solid angle from
the source to the surface is equal in all directions. The bottom shows
recordings with significant phase differences which can not be accounted for
by volume conduction and must be due to “connections” in the interior of
the sphere. As discussed in more detail in section 9, the cross-spectrum is
the sum of the in-phase potentials (i.e., cospectrum) and out-of-phase
potentials (i.e., quadspectrum). The in-phase component contains volume
conduction and the synchronous activation of local neural generators. The
out-of-phase component contains the network or connectivity contributions
from locations distant to a given source. In other words, the cospectrum =
volume conduction and the quadspectrum = non-volume conduction which
can be separated and analyzed by independently evaluating the cospectrum
and quadspectrum (see section 9).

! Theoretically, large phase differences can be produced by volume conduction when there is a deep and
temporally stable tangential dipole that has a positive and negative pole with an inverse electrical field at
opposite ends of the human skull. In this instance, phase difference is maximal at the spatial extremes and
approximates zero half way between the two ends of the standing dipole. However, this is a special
situation that is sometimes present in evoked potential studies but is absent in spontaneous EEG studies.

In the case of spontaneous EEG there is no time locked event by which to synchronize potentials that result
in a standing dipole, instead, there is an instantaneous summation of millions of ongoing rhythmic
pyramidal cell dipoles with different orientations averaged over time.



Cross-Spectral Power = Volume Conduction + Connectivity
{Cospectrum + Quadspectrum)
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Fig. 1 — Illustration of volume conduction vs. connectivity. Top is a sine
wave generator in the center of a sphere with sensors on the surface of the
sphere. The sine wave generates zero phase lag square waves at all points
on the surface of the sphere due to volume conduction. The cospectrum is
high and the quadspectrum = 0. The bottom is the same sine wave
generator in the center of the sphere but with network connections in the
interior of the sphere. As a consequence there are phase differences in the
surface recordings which are detected in the quadspectrum component of the
cross-spectrum. See section 9 for details.

Another illustration of the relationship between “In-Phase” and
volume conduction vs. “Out-of Phase” and connectivity is in figure 2.




Cross-Spectrum = Volume Conduction + Connectivity

In-Phase Out-of-Phase
cospectrum quadspectrum
Phase Delay = 0 deg Phase Delay > 0 deg

Fig. 2- Illustration of the “In-Phase” volume conduction vs. “Out-of-Phase” connectivity
components of the Cross-Spectrum. See section 9 for more details.

In NeuroGuide it is simple to test the “In-Phase” vs “Out-of-Phase”
analyses by using sine waves and shifting one sine wave with respect to a
second sign wave and then computing the cospectrum and quadspectrum.
To test the cospectrum and quadspectrum download NeuroGuide from
http://www.appliedneuroscience.com/Contact%20Download].htm and after
launching NeuroGuide click File > Open > Signal Generation and then enter
sine waves at different phase shifts for a given frequency and then compute
the cospectrum and quadspectrum. Figure 3 shows an example of the
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Fig. 3- Example of cospectrum (in-phase) and quadspectrum (out-of-phase) power using
two 5 Hz sine waves shifted by 10 degrees from 0 to 180 degrees. Blue diamonds are the
in-phase cospectrum values and the red squares are the out-of-phase quadspectrum power
values.

The use of the quadspectrum or “Out-of-Phase” computation is a
method to remove zero phase lag from the computation of coherence and
thus is volume conduction corrected coherence also referred to as Zero-
phase lag removed coherence (Nolte et al, 2004; Pascual-Marqui, 2007).

4- How is network zero phase lag different from volume conduction?

Spatially distributed neurons exhibit near zero phase difference,
referred to as a “binding” or “synchrony” within a network of neurons,
which is independent of volume conduction (Ekhorn et al, 1988; Gray et al,
1989, John, 2005; Thatcher et al, 1994). The thalamus is the master
synchronizer of the EEG and “binding” at zero phase lag can easily be
produced by the centrally located thalamus (see Steriade, 1995). Multiple
unit recordings and Magnetic electroencephalography (MEG) which is
invisible to volume conduction have firmly established the scientific validity
of network zero phase lag independent of volume conduction (Rogers,




1994). The thalamus and septo-hippocampal systems are centrally located
inside of the brain and contains “pacemaker” neurons and neural circuits that
regularly synchronize widely disparate groups of cortical neurons (Steriade,
1995). As illustrated in Figure 4, a centrally synchronizing structure “C”
can produce zero phase lag and simultaneously synchronize neural
populations “A” and “B” without any direct connection between “A” and
“B”. As shown in figure 3 the cross-spectrum of coherence and phase
difference can distinguish between volume conduction and network zero
phase differences such as produced by the thalamus or the septal-
hippocampus-entorhinal cortex, etc. For example, if the phase difference is
uniformly zero in the space between “A” and “B” then this is volume
conduction. On the other hand if the phase difference is not zero at points
spatially intermediate between “A” and “B” then this is an example of zero
phase difference independent of volume conduction. This is why a larger
numbers of electrodes is important and why dipole source reconstruction can
help resolve thalamic synchronization of cortical sources. The study by
Thatcher et al, 1994 is an example of significant phase differences at
intermediate short distances in contrast to zero phase difference between
more distant locations which can not be explained by volume conduction.

In the chapters below we begin with a discussion of correlation, then
coherence and phase difference and then bi-spectra. We show that there is a
commonality shared by all of these measures — the commonality is the
statistical “degrees of freedom”. Each measure of cortical network
dynamics involves the detection of a “signal” within “noise” and each
measure shares the same statistical properties, namely, increased sample
sizes are proportional to increased sensitivity and increased accuracy of the
estimates of coupling.

5- Pearson product correlation (“comodulation” and Lexicor “spectral
correlation coefficient™)

The Pearson product correlation coefficient is often used to estimate
the degree of association between amplitudes or magnitudes of the EEG over
intervals of time and frequency (Adey et al, 1961). The Pearson product
correlation coefficient does not calculate a cross-spectrum and therefore
does not calculate phase nor does it involve the measurement of the
consistency of phase relationships such as with coherence and the bi-
spectrum. However, coherence and the Pearson product correlation
coefficient are statistical measures and both depend on the same number of
degrees of freedom for determining the accuracy of the measure as well as
the same levels of statistical significance. The Pearson product correlation



coefficient is a valid and important measure of coupling and it is normalized
and independent of absolute values.

The Pearson product correlation coefficient (PCC) has been applied
to the analysis of EEG spectra for over 40 years, for example, some of the
earliest studies were by Adey et al (1961); Jindra (1976) Paigacheva, I.V.
and Korinevskii (1977). The general method is to compute the auto power
spectrum for a given epoch and then to compute the correlation of power or
magnitude over successive epochs, i.e., over time. The number of degrees
of freedom is determined by the number of epochs. Neuroscan, Inc. offered
this method of EEG analysis in the 1980s. Recently, the application of the
Pearson product correlation coefficient (PCC) for magnitude has been called
“comodulation” (Sterman and Kaiser, 2001). Below is the general equation
for the computation of “spectral correlation” or “spectral amplitude
correlation” and the recent term “comodulation” which is a limited term
because it fails to refer to the condition of a 3™ source affecting two other
sources without the two sources being directly connected. It is also limited
because comodulation can not correct for volume conduction. The term “co-
modulation” has a different meaning than “synchronization” (Pikovsky et al,
2003) and in order to reduce confusion it is best to simply refer to the
correlation itself. In other words, it is best to use the term “Correlation” or
“Pearson product correlation coefficient” (PCC) unless additional path
analyses or partial correlation analyses were used to show that “co-
modulation” and not a 3™ modulator “C” is the correct model or that there is
no synchrony involved. Figure 3 illustrates the differences in meaning
when using the terms “Correlation” vs the term “Comodulation”. Coherence
has the same problem as the correlation in distinguishing a 3™ source.
However the term coherence, like correlation, does not wrongly assume
comodulation.



Pearson Product Co-Modulation
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Fig. 4 — The correlation coefficient (and coherence) includes at least two possible
couplings and mixtures of these two types of coupling: 1- where neuron A
influences neuron B and vice versa and, 2- where a third neuron ‘C’ influences
neuron A and neuron B and there is no connection between A and B. Co-
modulation omits the standard ‘C’ possibility and is limited to where neuron A
influences neuron B and vice versa. The limitation of the term “comodulation” is
that without partial correlation analyses or path analyses it is not possible to omit
coupling number 2 which means that the term comodulation can be misleading
unless these additional analyses are conducted.

As discussed by Pikovsky et al (2003) the term modulation is
complicated and it is possible for there to be modulation without
synchronization and synchronization without modulation. As stated by
Pikovsky et al (2003, p. 77) “Generally, modulation without synchronization
is observed when a force affects oscillations, but cannot adjust their
frequency.” Without further analyses to determine this distinction it is best
to simply refer to amplitude or power correlation.

The distinguishing characteristic of the application of the Pearson
product correlation coefficient is the computation of the time course of the
normalized covariance of spectra over an interval of time:




Eq. 1-
2 (X =X)(Y -Y)
r=——= — —
(X=X =YY
N N
or the computationally simpler equation that one can compute more easily
using a hand calculator:

Eq.2 -

NY XY =Y X>Y
JINEX?=(EXPUNYY? - (XY)?)

For example, if one computes the FFT over 1 second epochs for a 60
second recording period, i.e., N = 60, then the number of degrees of freedom
in the spectral correlation coefficient (SCC) for channels X and Y =60 -1 =
59. For 59 degrees of freedom then a correlation of 0.258 or higher is
statistically significant at P <.05. This is a valid and commonly used
connectivity measure, however, it is important to remember that the
correlation coefficient includes volume conduction + network connectivity,
1.e., they are inextricably confounded. This is because the correlation
coefficient omits phase difference and involves the “in-phase” or
autospectral values and therefore volume conduction can not be separated
and eliminated. This makes it more difficult to know if factors such as the
number and strength of connections are what are changing due to
experimental control or is it the “volume conduction” that is changing? As
explained in section 8, coherence using complex numbers and phase
differences separate volume conduction from network dynamics and
automatically solve this problem.

Another method of applying the Pearson Product correlation was
developed by Lexicor, Inc. in the 1990s. This method computes the
correlation between EEG spectra measured from two different locations and
uses the individual spectral bin values within a frequency band. For
example, if there are five frequency bins in the alpha frequency band (i.e.,
8Hz, 9Hz, 10Hz, 11Hz and 12Hz), then N = 5 and the number of degrees of
freedom =N — 1 =4. When the degrees of freedom = 4 then a correlation
coefficient of 0.961 or higher is necessary in order to achieve statistical
significance at P <.05. Equations 1 and 2 are used to calculate the Pearson
product correlation in both instances.



Dr. Thomas Collura recently evaluated the commonalities and
differences between “comodulation” and the Lexicor application of the
Pearson product correlation (Collura, 2006; 2008). It was shown that the
difference between the “co-modulation” and Lexicor methods is primarily in
terms of the number of degrees of freedom as well as the evaluation of
covariance of spectral energies over time in the former application of the
Pearson Product correlation versus within frequency band covariation across
channels in the Lexicor method of applying the Pearson product correlation.

Below is a hand calculator example of a Lexicor application of the
Pearson product correlation coefficient for the alpha frequency band (8 — 12
Hz column on the left) between channel X and channel Y using easy
numbers for a hand calculator using equation 2 with N =5 (i.e., number of
spectral bins within a band and the number of degrees of freedom = 4).

Table I
X (uV) Y@V)| X V)| Y V) XY
8Hz 1 2 1 4 2
9Hz 2 1 4 1 2
10Hz 3 2 9 4 6
11Hz 3 1 9 1 3
12Hz 4 2 16 4 8
YX=13 |YY=8 YX*=39 |[YY' =18 |¥YXY=2I

N XY -3 X>Y
JINE X = X)P)NIY - (32Y))

[ 5x21-13x8
J(5x39-13%)(5x 18 -8%)

r= 1 =+0.001479

\26 x 26

Figure 5 shows the results of the BrainMaster implementation of the
Lexicor spectral correlation method in which very high correlation values
are present because of the low number of degrees of freedom and especially
the divergent differences at higher frequencies because of slight differences
in filtering. This figure emphasizes that extreme caution should be used
when computing a correlation coefficient using the Lexicor method with low
degrees of freedom.




Comparison of Lexicor 8CC and BrainMaster SCC
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Fig. 5 - Comparisons between the BrainMaster and Lexicor implementation of the
spectral correlation method. The correlation values are all very high due to the low
degrees of freedom and miss-match of calculation occurs at the higher frequencies
depending on the filter parameters (From Collura, 2006).

LORETA source correlations are another example of the application
of the Pearson product correlation coefficient (Thatcher et al, 2006). Below
are examples of the relationship between cortico-cortical connectivity and
distance from a point source using LORETA current sources and the Pearson
product correlation coefficient (PCC) as applied to sequential epochs of
time. The degrees of freedom ranged from 29 to 60 in which a correlation
of 0.367 to 0.254 is necessary for P <.05. This analysis is a cross-frequency
correlation as well as a cross-region of interest correlation. The time series
analyses of cross-channel and cross-frequency coherence and phase
synchrony is discussed in sections 25 to 39.
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Fig. 6 - Illustration of a cortico-cortical connection model. Top is the organization of
intra-cortical connections according to Schulz and Braitenberg (2002). A = gray matter
intra-cortical connections, B = ‘U’ shaped white matter connections and C = long
distance white matter connections. Bottom is an exemplar contour map of source
correlations in which the horizontal bands of increasing and decreasing source
correlations correspond to the different cortico-cortical connection systems as described
in the top of the figure. From Thatcher et al, 2006.

6- What is Coherence?

Coherence is a measure of the amount of phase stability or phase jitter
between two different time series. Coherence combines something
analogous to the “Pearson product-moment correlation” to the phase angles
between two signals. When the phase difference between two signals is
constant than coherence = 1, when the phase difference between signals is
random then coherence = 0. It is possible for there to be a constant phase
angle difference at two different frequencies. In the later case the
terminology is cross-frequency coherence or bi-spectral coherence or n:m
phase synchrony (Schack et al, 2002; 2005). If the measures are within the
same frequency band, then the terminology is simply “coherence” which
assumes auto-frequency coherence. Coherence is mathematically analogous




to a Pearson product-moment correlation and therefore is amplitude
normalized, however, coherence is a statistic of phase differences and yields
a much finer measure of shared energy between mixtures of periodic signals
than can be achieved using the Pearson product-moment correlation
coefficient of amplitudes. In fact, coherence is essential because the degree
of relationship or coupling between any two living systems cannot be fully
understood without knowledge of its frequency structure over a relative long
period of time. Another advantage of Coherence, as mentioned previously,
is its dependence on the consistency of the average phase difference between
two time series, where as the Pearson product-moment correlation
coefficient is independent of phase differences. The fine details of the
temporal relationship between coupled systems is immediately and
sensitively revealed by coherence.

In this paper we will first describe the mathematics of the
autospectrum and power spectrum as they apply to EEG coherence by using
simple hand calculator instructions so that one can step through the
mathematics and understand coherence and phase at a basic level (some of
the deeper mathematical detail is in the Appendix). We will step the reader
through simple examples that can be solved with a hand calculator (scientific
calculator is recommended) to further illustrate how coherence is computed
and to demonstrate by simulation of EEG signals and noise. We will also
address the statistical properties of the power spectrum, coherence and phase
synchrony using calibration sine waves and the FFT in order to illustrate the
nature of coherence and phase angle (i.e., phase difference and direction)
and finally, a statistical standard by which the signal-to-noise ratio and
degrees of freedom in the computation of EEG coherence are measured
using a hand calculator and by computer simulation of the EEG. Computer
signal generators not only verify but most importantly also explore a rich
universe of coherence and phase angles with a few mouse clicks (download
a free EEG simulator at: http://www.appliedneuroscience.com and download
the NeuroGuide demo program. Click File > Open > Signal Generation to
simulate the EEG, including “Spindles” and inter-spindle intervals, etc.
Another free EEG simulation program is at:
http://www.besa.de/index_home.htm , a third free EEG simulation program
(purchase of MatLab required) is at:
http://www.sccn.ucsd.edu/eeglab/index.html and a fourth simulation
program for the mathematics of the Fourier series is:
http://www.univie.ac.at/future.media/moe/galerie/fourier/fourier.html#fourie
r



http://www.appliedneuroscience.com/
http://www.besa.de/index_home.htm
http://www.sccn.ucsd.edu/eeglab/index.html

Mathematical and statistical standardization of EEG coherence are
best understood using a hand held calculator and then by simulation of the
EEG.

Coherence arises from Joseph Fourier’s 1805 fundamental inequality
where by the ratio of the cross-spectrum/product of auto-spectrum < 1.
Coherence is inherently a statistical estimate of coupling or association
between two time series and is in essence the correlation over trials or
repeated measures. As mentioned previously, the critical concept is “phase
consistency”, i.e., when the phase relationship between two time series is
constant over trials than coherence = 1.

7- How Does One Compute Coherence?

The first step in the calculation of the coherence spectrum is to
describe the activity of each raw time-series in the frequency domain by the
“auto-spectrum” which is a measure of the amount of energy or “activity” at
different frequencies. The second step is to compute the “cross-spectrum”
which is the energy in a frequency band that is in common to the two
different raw data time-series. The third step is to compute coherence
which is a normalization of the cross-spectrum as the ratio of the auto-
spectra and cross-spectra. To summarize:

1- Compute the auto-spectra of channels X and Y based on the “atoms” of
the spectrum

2- Compute the cross-spectra of X and Y from the “atoms” of the spectrum

3- Compute Coherence as the ratio of the auto-spectra and cross-spectra

8- First Compute the auto-spectra of channels X and Y based on the
“atoms” of the spectrum

Joseph Fourier in his thesis of 1805, benefiting from almost a century
of failed attempts, finally correctly showed that any complex time-series can
be decomposed into elemental “atoms” of individual frequencies (sine and
cosine and linear operations). Fourier defined the autospectrum as the
amount of energy present at a specific frequency band. He showed that the
autospectrum can be computed by multiplying each point of the raw data by
a series of cosines, and independently again by a series of sines, for the
frequency of interest. The average product of the raw-data and cosine is
known as the cosine coefficient of the finite discrete Fourier transform, and
that for the sine and the raw data as a sine coefficient. The relative
contributions of each frequency are expressed by these cosine and sine
(finite discrete Fourier) coefficients. The cosine and sine coefficients



constitute the basis for all spectrum calculations, including the cross-
spectrum and coherence. Tick (1967) referred to the sine and cosine
coefficients as the “atoms” of spectrum analysis. For a real sequence {x;, 1
=0,....,N-1} and At = the sample interval and f = frequency, then the
cosine and sine transforms are:

N
Eq.3 - The cosine coefficient = a(n) = At> X (i)cos2zfiAt
i=1

N
Eq.4 - The sine coefficient=b(n) = At> X (i)sin 2zftAt
i=1

A numerical example of the computation of the Fourier Transform is
shown in Table II. The data is from Walter (1969) which served as a
numeric calibration and tutorial of EEG coherence in the 1960s (see also
Jenkens and Watts, 1969 and Orr and Naitoh, 1976). This 1960s dataset is
still useful for explaining the concept of spectral analysis as it applies to the
Electroencephalogram as QEEG was developed in the 1950°s and used at
UCLA and other universities giving rise to a large number of publications
and the development of the BMDP Biomedical statistical programs in the
1960s. The Walter (1969) data are 8 digital time points that were sampled
at 100 millisecond intervals (0.1 sec. intervals) with 3 separate
measurements (i.e., repetitions). The highest frequency resolution of this
data set is defined as 1/T = 1/0.8 sec. = 1.25 Hz. The highest discernable
frequency is 5 Hz (Nyquist limit) and thus the data are bounded by 1.25 Hz
and 5 Hz, with values at every 1.25 Hz. We will use the same historic
examples that pioneers used in the early development of quantitative EEG
used in the 1950s - 1970s. The analyses below are based on the careful step
by step evaluation of the Walter (1969) paper by Orr, W.C. and Naitoh, P.
in 1967 which we follow.

The Walter (1969) cosine and sine coefficients in Table II will be used
for the purpose of this discussion. The focus will be on the use of a hand
calculator to compute coherence using the values in Table II and not on the
computation of the coefficients themselves.” The reader is encouraged to

* A Matlab computation of the sine and cosine coefficients using the raw data in Table II produced the
following coefficients 2.5355- 2.9497i, 17.0000- 1.0000i, -4.5355- 6.9497i using the complex notation a +
ib. Even though different coefficients may be produced than those published (Walter (1969; Orr and
Naitoh, 1976) let us continue to use the Walter (1969) coefficients because the procedures to compute
coherence and not the coefficients are what are of interest in this paper. We will produce an updated table
and set of numbers in a future revision.



either write intermediate values on a piece of paper or to store temporary
variable values using the memory keys of their hand calculator.

Table 11
Example of Raw Data
Table of Channel X Table of Channel Y
Observation Observation
(seconds) 00 01 02 03 04 05 0.6 0.7 | (seconds) 00 01 02 03 04 05 06 0.7
Recordl 3 5 6 2 4 -1 4 1 |[Recordl -1 4 -2 2 0 -0 2 -1
Record2 1 1 4 5 1 5 -1 4 |Record2 4 3 -9 2 7 0 -5 1
Recordd -1 7 -3 0 2 1 -1 -2 |Record3 -1 9 -4 -1 2 4 -1 -5
Hand Calculator Example of Cosine and Sine Coefficients
Channel X Channel Y
Cosine Coefficients a(x) Cosine Coefficients b(y)
f (Hz) 1.25 2.5 3.75 50 | f(Hz) 1.25 2.5 3.75 5.0
Record1l 0.634 4.25 -1.134 -1.25 | Record1l -0.073 -0.25 -0.427 -0.75
Record2 0.634 2.0 -1.134  -0.875 | Record2 -0.398 6.5 -1.106 -1.25
Record 3 -0.043 1.75 -1.457 -1.375 | Record3 -0.368 15 -0.934 -1.375
Average 0.408 2667 -1.242 -1167 | Average -0.272 2583 -0.822 -1.125
Channel X Channel Y
Sine Coefficients b(x) Sine Coefficients b(y)
f (Hz) 1.25 25 3.75 50 | f(Hz) 1.25 2.5 3.75 5.0
Record1 0.737 0.25 1.737 0.000 | Record1l  0.237 0.75  2.237 0.000
Record 2  0.487 -3.25 1.987 0.000 | Record2 -0.043 0.00 1.457 0.000
Record 3 0.414 2.5 2.414 0.000 | Record3  0.641 4.75 2.341  0.000
Average 0.546 -1.67 2.048  0.000 | Average 0.345 1.833 2.012 0.000
Autospectrum X Autospectrum Y
f (Hz) 1.25 25 3.75 50 |f(Hz) 1.25 2.5 3.75 5.0
Record1l 0.945 18.125 4.303 1.563 | Record 1 0.061 0.625 3.186 0.561
Record 2 0.639 14563 5.234 0.766 | Record2  0.159 4225  3.342 1.563
Record3 0.173 9.313 7.95 1.891 | Record 3 1.036 24.813 6.353 1.891
Average 0.586 14.00 5.838 1.407 | Average 0.419 22561 4.96 1.339




The frequency analysis of a time series of finite duration “at” a chosen
frequency does not really show the activity precisely at that frequency alone.
The spectral estimate reflects the activities within a frequency band whose
width is approximately 1/T around the chosen frequency. For example, the
activity “at” 1.25 Hz in the example in Table II represents in fact the
activities from 0.625 Hz to 1.875 Hz (or equivalently, 1.25 Hz + 0.625 Hz).

The autospectrum is a “real” valued measure of the amount of activity
present at a specific frequency band. The autospectrum is computed by
multiplying the raw data by the cosine, and independently, by the sine for
the frequency of interest in a specific channel. The average product of the
raw-data and cosine is referred to as the “cosine coefficient” of the finite
discrete Fourier transform, and the average product of the sine and the raw-
data is referred to as the sine coefficient. Let N, f and a(x) represent the
number of observed values for a time series x(1), the frequency of interest,
and a cosine coefficient n, then the summation or necessary “smoothing” is
defined as:

\ .
Eq. 5 - The average cosine coefficient= a(n) = ﬁz X () cos(%j
i=1

y .
Eq.6 - The average sine coefficient = b(n) = ﬁz X (i) sin(%)
i=1

Each frequency component has a sine and cosine numerical value. The
actual autospectrum value is arrived at by squaring and adding the respective
sine and cosine coefficients for each time series. The power spectral value
for any frequency intensity is:

Eq.7-  F(x)=( (x)+b’ (%)),

That 1s, the power spectrum is the sum of the squares of the sine and cosine
coefficients at frequency f as shown in Table II.

9- Second Compute the cross-spectra of X and Y from the “atoms” of
the spectrum

To calculate the cross-spectrum, it is necessary to consider the “in-
phase” and “out-of-phase” components of the signals in channels X and Y.
The former is referred to as the co(incident) spectrum or cospectrum and the



latter is referred to as the guadrature spectrum or quadspectrum. The “in-
phase” component is computed by considering the sine coefficients as well
as the cosine coefficients of X and Y. The “out-of-phase” component
concerns relating the cosine coefficient of time series X to the sine
coefficient of times series Y, and similarly the sine coefficient of times
series X to the cosine coefficient of time series Y.

A simple hand calculator test will show that the quadspectrum = 0 for
any two in-phase sine waves (i.e., phase difference = 0). This simple test is
important when eliminating or separating the “volume conduction”
contribution to the cross-spectra generated by the brain network or brain
“Connectivity” aspects of EEG as discussed in section 2. For example, non-
volume conduction measures where there are statistically significant phase
differences of less than 1 degree have been published (Ekhorn et al, 1988;
Barth, 2003). Long electrical phase differences of 5° to 30° simply can not
be explained by volume conduction as a matter of physics.

10- How to Compute the cospectrum and quadspectrum
Below is a hand calculator example of how to compute the coherence
spectrum. Step 1 is to calculate the cospectrum and quadspectrum:

a(x) = cosine coefficient for the frequency (f) for channel X
b(x) = sine coefficient for the frequency (f) for channel X
u(y) = cosine coefficient for the frequency (f) for channel Y
v(y) = sine coefficient for the frequency (f) for channel Y
The cospectrum and quadspectrum then are defined as:

Eq. 8 - Cospectrum (f) = a(x) u(y) + b(x) v(y)

Eq. 9 - Quadspectrum (f) = a(x) v(y) — b(x) u(y)

The cross-spectrum power is real valued and defined as:

Eq. 10 - (f) = /(cos pectrum( f)* + quadspectrum( f)?)

Eq. 11- =J(@0)u(y) + bV ()’ + @(x)v(y) —b(x)u(y))’



That is, the cross-spectrum power is the absolute value of the complex-
valued cross-spectrum. The cross-spectrum power is a measure of
connectivity based on the total shared energy between two locations at a
specific frequency and it is a mixture of in-phase and out-of-phase activity
(i.e., local and distant). The cross-spectrum power is a real number because
a complex number times the complex conjugate is a real number.
Coherence is a normalization of the cross-spectral power by dividing by the
autospectra or the in-phase component and, therefore, coherence is
independent of autospectral amplitude or power and varies from 0 to 1.

Table III is an illustration of the computational details of coherence based
on the FFT auto and cross-spectra in Table II:

Table 111
Hand Calculator Example
Cospectrum, Quaspectrum and Ensemble Smoothing

F (Hz) Cospectrum Quaspectrum

1.25 2.50 3.75 5.00 1.25 2.50 3.75 5.00
Record 1 0.128 -0.875 4375 0.938 0.204 3.25 -1.795 0.000
Record 2 -0.272  13.00 4147 1.094 |-022 -21.125 0.541 0.000
Record 3 0.363 1450 7.012 1891 |0.108 4563 -1.156 0.000
Average 0.073 8.875 5176 1307 |0.031 -4.438 -0.803 0.000

Cospectrum (1.25 Hz) = 0.634(-0.073) + 0.737(0.237) = 0.128
Quadspectrum (1.25 Hz) = 0.634(0.237) — 0.737(-0.073) = 0.204
Cross-spectrum (1.25 Hz) = 0.128 + sq. root -1 (0.204) and
Cross-spectrum power (1.25 Hz) = (0.128% + 0.204%) % = 0.241

This computation is repeated for each frequency component to yield the
complete cross-spectrum.

As mentioned previously in section 3, the cross-spectrum is the sum
of the in-phase potentials (i.e., cospectrum) and out-of-phase potentials (i.e.,




quadspectrum). The in-phase component contains volume conduction and
the synchronous activation of local neural generators. The out-of-phase
component contains the network or connectivity contributions from
locations distant to a given source. In other words, the cospectrum = volume
conduction and the quadspectrum = non-volume conduction which can be
separated and analyzed by independently evaluating the cospectrum and
quadspectrum. Figure 7 is an example of the differences between the in-
phase and out-of-phase components of the cross-spectrum in a right
hemisphere hematoma patient. The cospectrum shows high focal sources
and little distant zero phase lag relations. This is indicative of a source near
to the surface of the scalp at P4 and C4. The quadspectrum shows high out-
of-phase power or network connections between P4 and the distant left
hemisphere and especially F3 that are highly out-of-phase. In general the
right parietal lobe is out of phase with respect to the spatially distant left
hemisphere.

Right Central {C4) and Parietal Lobe (P4) Hematoma

Cospectrum In-Phase Component Quadspectrum Out-of Phase Component

Theta In Phase Power (uV) Thaeta Out of Fhase Power (UV)

o6 o0
00000 occee
00000 oc00e0
e00ce 0020
oo 3 o

Fig. 7 — Left is the cospectral power or In-Phase power in all 171 electrode combinations
of the 10/20 system. Right is the quadspectral power or Out-of-Phase relationships. P4
and C4 are near to the location of the right hemisphere hematoma. P4 is out-of-phase
with a large number of locations, especially the left hemisphere (from NeuroGuide




| Demo).

11- Third Compute Coherence as the ratio of the auto-spectra and
Cross-spectra

Coherence is usually defined as:

|Cross — Spectrum( f )XY|2

Eq. 12 - Coherence (f) = (Autospectrum( f)(X))(Autospectrum( f )(Y))

However, this standard mathematical definition of coherence hides some of
the essential statistical nature and structure of coherence. To illustrate the
fundamental statistics of coherence let us return to our simple algebraic
notation:

Eq. 13 -
(- @()u(Y) +b()V(Y)))* +(Q @()V(Y) —b(x)u(y)))®

Coherence (f)= — N

2. @)% +b00)*) Y u(y)* +v(y)*)

Where N and the summation sign represents averaging over frequencies in
the raw spectrogram or averaging replications of a given frequency or both.
The numerator and denominator of coherence always refers to smoothed or
averaged values, and, when there are N replications or N frequencies then
each coherence value has 2N degrees of freedom. Note that if spectrum
estimates were used which were not smoothed or averaged over frequencies
nor over replications, then coherence = 1 (Bendat and Piersol, 1980;
Benignus, 1968; Otnes and Enochson, 1972). In order to compute
coherence, averaged cospectrum and quaspectrum smoothed values with
degrees of freedom > 2 and error bias = 1/N is used.

The numerical example of coherence used the average cospectrum
and quadspectrum across replications in Table III. For example from Table
III the coherence at 1.25 Hz is:

2 2
Eq. 14 - Hand Calculator Coherence (1.25 Hz) = 0.0737 +0.0317 0.026

0.586(0.419)




This computation is repeated for each frequency component to yield the
complete coherence spectrum, a typical plot of coherence is frequency on
the horizontal axis (abscissa) and coherence on the vertical axis (ordinate).
Coherence is sometimes defined and computed as the positive square-root
and this is referred to as “coherency”.

12- Some Statistical Properties of Coherence

How large should coherence values be before they can be considered
reliable? The answer is it depends on the true coherence relationship and the
degrees of freedom used in the averaging computation in equation 13. In
general the degrees of freedom increase as a square root of N (i.e., the
amount of smoothing) and the more the degrees of freedom the better (i.e.,
averaging across frequency and/or across repetitions or “smoothing”). The
trade off is between frequency resolution and reliability, the longer the
interval of time over which averaging occurs or the larger the number of
repetitions then the greater are the degrees of freedom. Short time intervals
of low frequencies by their nature have low degrees of freedom. For this
reason the NeuroGuide uses the default of a 1 minute sample, e.g., the theta
frequency band 4 — 7 Hz NeuroGuide EEG coherence for a 1 minute sample
=7 (0.5 Hz bins) + 117 FFTs = 124 x 2 = 248 degrees of freedom. To test
the statistical properties of coherence select shorter segments of simulated
EEG and systematically change the signal-to-noise ratio in the NeuroGuide
demo signal generator at www.appliedneuroscience.com. After launching
the NeuroGuide demo click Open > Signal Generation.

13- How large should coherence be before it can be regarded as
significantly larger than zero?

Low degrees of freedom always involve “Inflation” of the true signal-
to-noise relationship between two channels when a Pearson product
correlation coefficient is computed. EEG coherence is no exception and
this explains why coherence is highly inflated when the degrees of freedom
are low and the bandwidth is small. For example, figure 8 shows the
inflation of coherence (y-axis) when a signal in one channel (4 Hz — 19 Hz
sine wave) is compared to random noise in a second channel with increasing
degrees of freedom (x-axis) and different bandwidths. The ideal is
coherence = 0.


http://www.appliedneuroscience.com/
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Figure 8 — Coherence (y-axis) vs. number of time samples (y-axis). Sample rate = 128
Hz. The five curves are for different band widths. Series 1 =4 Hz, series 2 = 6 Hz,
series 3 = 8 Hz, series 4 = 10 Hz and series 5 = 12 Hz bandwidths. The wider the band
width the more stable and accurate is coherence.

The digital reality of low degrees of freedom using a 2 Hz bandwidth are
also shown in figure 8. The y-axis is coherence (x100). The x-axis are the
number of time samples at a sample rate of 128 Hz using a digital filter
(complex demodulation) to compute coherence. The five curves represent
different bandwidths (4 Hz, 6 Hz, 8 Hz, 10 Hz & 12 Hz). The ideal
coherence value = 0 at infinity and series 5 with a 12 Hz band width is
approximately 9% at 128 time samples. Mathematically coherence inflation
is defined as:

Eq. 15 — Inflation of Coherence (IF) = coherence of signal (S) divided by
the coherence of white noise (N) =IF = S/N

The curves in Figure 8 show that after 1 second of averaging the EEG
coherence inflation values ranged from 1 to 0.10 (or 10%). Figure 8 also
shows that the wider the band width then the larger the number of degrees of
freedom. The equation to compute the degrees of freedom when using
complex demodulation is:

Eq. 16- Df=2BT

Where B = bandwidth and T = time samples (Otnes and Enochson, 1972 and
Appendix-B).




Bendat and Piersol (1980) as elaborated by Nunez et al (1997) provide
another measure of the 95% interval for coherence which is expressed as:

F() <F@)< FO)
1+2e 1-2e

Eq. 17 -

Where F(i) applies to the auto or cross spectral density or coherence. The
confidence interval depends on the error term e defined as the RMS error
(i.e., root mean square error). In general, the error may be estimated by:

Eq. 18 - e, _ L

JIN

14- Is there an inherent time limit for EEG Coherence Biofeedback?
The answer is yes, because coherence is unique in EEG biofeedback
because it depends upon averaging the phase angles or phase differences.
The lower the variance or the more constant the phase differences (or the
greater the phase synchrony or phase locking) then the higher the coherence.
Similarly, as a property of statistics the greater the degrees of freedom then
the less the statistical inflation of the real coherence value. Based on
operant conditioning studies the feedback interval or feedback delay is
crucial for the ability of the brain to link together two past events. Too short
an interval or too long an interval reduces the likelihood of a person making
a “connection” between the biofeedback display/sound or signal and the
brain’s electrical state at a previous moment in time. In the case of
amplitude and phase difference the calculation does not depend upon an
average as it does when computing coherence. Thus, coherence EEG
biofeedback inherently requires a longer feedback delay than does the nearly
instantaneous computations of power, ratios of power, relative power,
amplitude, amplitude asymmetries, phase difference (or phase angle), etc.
To the best of our knowledge the minimum amount of inflation that leads to
the greatest efficacy of biofeedback training using EEG coherence has not
yet been published. The minimal interval is a function of at least two
factors: 1- the stability of the signal being fed back, i.e., a noisy and jumpy
signal has no connection formation value and, 2- the interval of time
between the brain event and the feedback. Both are critical and seconds and
milliseconds are the domain. The interval from 0 to about 80 — 100
milliseconds is a neurophysiological “blank period” during the integration
interval where simultaneity is resolved as a single “quanta” or “perceptual



frame” of consciousness (Thatcher and John, 1977; John, 2005). At about
300 — 500 msec the match miss-match resolution of expectation and received
inputs is completed. Associations and connections in time occur from about
200 msec to minutes of time. Thus, operant conditioning of EEG
biofeedback is likely to work best when the interval of time between an
“EEG Event” is greater than 100 msec and around 1 — 2 seconds, with a
operating curve yet to be produced. When accurate measurements are made
of the optimal interval of time between a brain event and the feedback signal
and not active stimulation, then one can expect that 500 msec to 1 sec would
be a good interval of time for associations to occur using operant
conditioning EEG biofeedback. For active stimulation EEG biofeedback
then phase reset can occur and many other phenomena that can easily be
measured can occur. However, modern EEG science easily handles event
related potentials (ERPs) if one knows the instant in time when the stimulus
was delivered or the instant in time when the movement of the subject
occurred. Spontaneous EEG and ERPs are related in that the background
EEG is the “mother” of the ERP (electrical field) at a given moment of time.
The powerful and rhythmic background EEG are the summation of millions
of excitatory EPSPs oscillating in loops but only firing on the rising phase of
the oscillation. This results in a “quantization” of neuron excitability as
reflected by the rhythms of the EEG. The idea of “quantization” of neural
action potentials time locked to the rising phase of the EEG is old and is well
supported by recent evidence (Buszaki, 2006).

15- What is Phase Difference?

Coherence and phase difference (measured in angles) are linked by
the fact that the average temporal consistency of the phase difference
between two EEG time series (i.e., phase synchrony) is directly proportional
to coherence. For example, when coherence is computed with a reasonable
number of degrees of freedom (or smoothing) then the phase difference
between the two time-series becomes meaningful because the confidence
interval of phase difference is a function of the magnitude of the coherence
and the degrees of freedom. If the phase angle is random between two time
series then coherence = 0. Another way to view the relationship between
phase consistency (phase synchrony) and coherence is to consider that if
Coherence = 1, then once the phase angle relation is known the variance in
one channel can be completely accounted for by the other. The phase
relation is also critical in understanding which time-series lags or leads the
other or, in other words the direction and magnitude of the difference.



However, when using circular statistics the mean phase angle or phase
difference is relative to an arbitrary reference or starting point which is
difficult to define with spontaneous EEG. Spontaneous EEG is perfectly
useful because subjects are alert and holding themselves still or with no
motion as a reference and the magnitude and direction of a shift in phase
angle is all that is relevant (see section 15).

The phase difference is defined as:

(Smoothedquadspectrum( f))
(Smoothed cos pectrum( f))

Eq. 19 - Phase difference (f) = Arctan

In the numerical example in Table II,
Phase difference (or angle at 1.25 Hz) = Arctan 0.031/0.073 =22.7°

Two oscillators are frequency locked when the first derivative of the
phase difference has a stable periodic orbit even if there is a difference in
phase between the two oscillators. Two oscillators are entrained when they
are frequency locked in a 1:1 fashion with no phase difference. Two
oscillators are phase locked where there is a stable phase difference that is
not 1:1 (e.g., 2:3). Two oscillators are synchronized when they are phase
locked independent of the absolute value of the phase difference, e.g., when
the 1* derivative of the time series of phase = 0. Synchronization is in-phase
when the phase difference = 0 and out-of-phase is when the phase difference
# 0. Two oscillators are said to be synchronized in anti-phase when the
phase difference = 180°. Frequency locking without phase locking is called
phase trapping. The relationship between all of these definitions is depicted
in figure 9.



frequency locking
In-phase
entrainment synchronization phase locking
(1:1 fraquency locking)
anti-phase

Fig. 9 — Various degrees and types of locking of oscillators. From Izhikevich
and Kuramoto, 2005).

16 — What is Phase Resetting?

Coupled oscillators often drift apart in their phase relationship and a
synchronizing pulse can shift the phase of one or both of the oscillations so
that they are again in phase or phase locked for a period of time (Pikovsky et
al, 2003). Synchrony is defined as “an adjustment of rhythms of self-
sustaining oscillators due to their weak interactions” (Pikovsky et al, 2003).
Phase reset marks the onset of phase locking. Phase locking and the term
“entrainment” are synonymous. The amount of phase resetting per unit
time is depicted by phase reset curves or PRC = (new phase — old phase).
Positive values of the PRC correspond to phase angle advances, negative
values correspond to phase angle reductions. Weak coupling typically
exhibits a slow and smooth PRC whereas strong coupling between
oscillators often results in abrupt or a discontinuous PRC. A useful method
to measure phase resetting is by computing the first derivative of the time
series of phase difference on the y-axis and time on the x-axis. A significant
positive or negative first derivative of the time series of phase differences
represents the magnitude of phase resetting (the second derivative of the
phase shift is also useful in this computation). Phase reset is related to onset
of phase synchrony or phase locking and the period of near zero 1%
derivatives in time is an example of a homeostatic and stable dynamical
system (Pikovsky et al, 2003; John, 2005). Two interesting properties of




phase reset are that minimal energy is required to reset phase between
weakly coupled oscillators and phase reset occurs independent of amplitude.
In weakly coupled chaotic systems amplitude can vary randomly while
phase locking is stable.

Phase reset is defined as a significant positive or negative first
derivative of the time series of phase difference between two channels, 1.e.,
d(@, —@ /t>0or <0. Phase locked or phase synchrony is defined as that

period of time where there is a stable near zero first derivative of the
instantaneous phase difference between d(@, — @, /t=~0. A high coherence

value is related to extended periods of phase locking. A significant positive
first derivative of the time series of coherence marks the onset of phase
locking and a significant negative first derivative of the time series of
coherence marks the onset of phase dispersion over an interval of time. The
significance level can be determined by computing the means and standard
deviations of the first derivative for each time series and then computing a Z

. . . u—X
score for each time point with alpha at P <.05 or Z = D where u = mean

and x = the instantaneous first derivative at t and SD = standard deviation.
For example, depending on the method of computation, values near zero st.
dev. or < 1 st. dev may define the state of “Phase Locking”. Values > 2 st.
dev. may define the state of “Phase Transition” or “Phase Reset” (the alpha
threshold is a matter of observation and test).

Figure ten illustrates the concept of phase reset. Coherence is a
measure of phase consistency or phase clustering on the unit circle as
measured by the length of the unit vector r. The illustration in figure 10
shows that the resultant vector r; = r, and therefore coherence when
averaged over time is constant even though there can be a shift in the phase



EEG Phase Reset as a Phase Transition in the Time Domain
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Fig. 10 — Illustrations of phase reset. Left is the unit circle in which there is a clustering
of phase angles and thus high coherence as measured by the length of the unit vector r.
The vector r1 = 45° occurs first in time and the vector r2 = 10° and 135° occurs later in
time.  The transition is between time point 4 and 5 where the 1% derivative is a
maximum. The right displays are a time series of the approximated 1% derivative of the
instantaneous phase differences for the time series ti, tp, t3, t4 at mean phase angle = 45°
and ts,t6,t7, ts at mean phase angle = 10°.  Phase reset is defined as a significant negative
or positive 1% derivative (y’ <0 or y’ > 0). The 1% derivative near zero is when there is
phase locking or phase stability and little change over time. The sign or direction of
phase reset is arbitrary since two oscillating events are being brought into phase
synchrony and represent a stable state as measured by EEG coherence independent of
direction. The clustering of stable phase relationships over long periods of time is more
common than are the phase transitions. The phase transitions are time markers of the
thalamo-cortical-limbic-reticular circuits of the brain (John, 2005; Thatcher and John,
1977).

angle (i.e., phase difference) that occurs during the summation and average
of the computation of coherence. This illustrates the advantage of phase
differences which are “instantaneous” and not a statistical average like
coherence and a correlation coefficient. Details for computing complex
demodulation and instantaneous spectra are in Appendix-B.

As mentioned previously, an important property of phase reset is that




it requires essentially zero energy to change the phase relationship between
coupled oscillators and by this process rapidly create synchronized clusters
of neural activity. In addition to phase reset without any change in
frequency or amplitude of the EEG spectrum is that it can also be
independent of phase history. That is, phase reset occurs independent of
magnitude and direction of the phase difference that existed before the onset
of the reset pulse (Kazantsev et al, 2004). What is important in the
computation of the first derivative of the time series of phase is the rate of
change of phase over time and not the absolute magnitude of phase.

Figure 11 shows the relationship between phase differences using Cz
as a reference and phase reset as measured by the 1* derivative of the phase
difference time series.

Example of Phase Reset. Top is phase {Deg) with Cz as the reference and the bottom
Is the 1% derivalive of phase {Deg/sec) or phase

Phase Reset
1= Derivative
Of Phase

Diepley Tina

Fig. 11 — Example of phase difference time series with Cz as the reference (Top) and the

1** derivative of the phase difference time series (Bottom) or phase reset. Analyses were
produced wusing the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com

Figure 12 shows examples of phase synchrony or phase locking when
the first derivative of the phase difference time series = 0 and phase reset
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when the 1* derivative of the phase difference time series # 0. Global phase
reset is defined as > 90% of the channels exhibiting simultaneous phase reset
and local phase reset is defined as 1 or a few channels exhibiting phase reset.
The intervals of time between phase reset are periods of phase synchrony.

Phase Synchrony when the 19 derivafive = 0, Phase Reset when the 15t derivative ¥ 0
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Figure 12 shows examples of phase synchrony or phase locking when the first derivative
of the phase difference time series ~ 0 and phase reset when the 1% derivative of the
phase difference time series # 0. Global phase reset is defined as > 90% of the channels
exhibiting simultaneous phase reset and local phase reset is defined as 1 or a few
channels exhibiting phase reset. The intervals of time between phase reset are periods of
phase synchrony also called “phase locking”. Analyses were produced using the
NeuroGuide Lexicor demo from the download at www.appliedneuroscience.com

Figure 13 shows how to quantify phase reset by dissecting its two
fundamental components, i.e., phase shift followed by phase locking.
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Phase Reset Metrics
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Fig. 13- Diagram of phase reset metrics. Phase shift (PS) onset was defined at the time point when a
significant 1% derivative occurred (> 5° /centisecond), phase shift duration (SD) was defined as the time
from onset to offset of the phase shift and the phase synchrony interval (SI) was defined as the interval of
time between the onset of a phase shift and the onset of a subsequent phase shift. Phase reset (PR) is
composed of two events: 1- a phase shift and 2- a period of synchrony following the phase shift where the
1™ derivative = 0 or PR = SD + SI. (from Thatcher et al, 2008a; 2008b)

17- How large should coherence be before Phase Difference can be
regarded as stable?

As mentioned previously, the confidence internal for the estimation of
the average phase angle between two time series is related to the magnitude
of coherence. When coherence is near unity then the oscillators are
synchronized and phase and frequency locked. This means that when
coherence is too low, e.g., < 0.2, then the estimate of the average phase
angle may not be stable and phase relationships could be non-linear and not
synchronized or phase locked. An example of a 30 degree phase angle
using the NeuroGuide signal generation program is shown in figure 13:




10 uV Signal + 30 degree Phase Shift & No Noise
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Fig. 13 shows an example of two 10 uV sine waves with the second sine wave shifted by
30 degrees with increasing amounts of noise added to the signal in one channel (signal-
to-noise ratio). The data is 60 seconds sampled at 128 Hz.(from Thatcher et al, 2004).
Analyses were produced using the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com.
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Fig—14. Top is coherence (y-axis) vs signal-to-noise ratio (x-axis). Bottom is phase
angle on the y-axis and signal-to-noise ratio on the x-axis. Phase locking is minimal or
absent when coherence is less than approximately 0.2 or 20%.

Figure 14 (from Thatcher et al, 2004) shows increased variability of
EEG phase angle or difference as noise is systematically added to the 30
degree shifted sine wave. Note that non-linear dynamical processes are
suggested by the fact that the mean = 30 degrees when coherence < 0.2.
Chaotic dynamics and reproducible correlations are often embedded in

similar time data.
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Figure 15 — The x-axis are different ranges of coherence (x100). The y-axis is the
standard deviation of coherence (blue circles) and phase angles (pink squares). The
dashed vertical line shows the level of coherence (20% or 0.2) when the variance of the
phase angle becomes very high. High variance of the phase angle means that there is
minimal or no phase locking.

Figure 15 (from Thatcher et al, 2004) shows that EEG coherence
linearly decreases as a function of the signal-to-noise ratio. It can be seen
that phase angles even with 248 degrees of freedom are instable and poorly
estimated as coherence decreases. EEG coherence at 0.2 or less is used as a
cut-off for accepting phase as a valid and stable linear measure. The
instability of a non-linear system may be present because the mean phase
angle = 30 degrees when coherence is less than 0.2, see Figure 14.

The test signals were computed using the NeuroGuide signal
generation program and by systematically increasing the amount of white
“noise” added to one of the channels used to compute coherence and phase
angle. In general, as the value of coherence decreases below approximately
0.2 or 20% (i.e., coherence x100) then phase angles are extremely variable
and unstable even using 248 degrees of freedom.




The calculations exceed what is possible using a hand held calculator,
however, computer simulations can produce results much faster than a hand
calculator. The understanding of coherence and phase can be explored by
any one who downloads the free NeuroGuide demo at:
www.appliedneuroscience.com and tests coherence and phase for
themselves.

18- Why the average reference and Laplacian fail to produce valid
coherence and phase measures.

As pointed out by Nunez (1981) “The average reference method of
EEG recording requires considerable caution in the interpretation of the
resulting record” (p. 194) and that “The phase relationship between two
electrodes is also ambiguous: (p. 195). It is easy to understand why
coherence and phase differences are invalid when using an average reference
since the summation of signals from all channels is “subtracted” or ‘added’
to the electrical potentials recorded at each electrode. Figure 16 below
shows the results of the average reference where noise and signal from each
channel is incorporated into all of the channels by being “subtracted” from
the electrical potential recorded from each channel. Thus, signals and noise
are mixed and added to the recordings from each channel making coherence
and phase differences invalid. A similar situation prevails with source
derivation or the Laplacian reference (Figure 17) since spatially weighted
signals and noise from other channels are averaged and subtracted from the
electrical potential recorded from each electrode site. Coherence when
using the average reference or source derivation is especially sensitive to the
presence of artifact or noise since the artifact will be mixed with and added
to all channels.

Figure 16 are the results of the computation of EEG coherence and
EEG phase differences using the average reference EEG simulation. The y-
axis in figure 16 (top) is coherence and the x-axis is the signal-to-noise ratio
(S/N). The y-axis in figure 16 (bottom) is phase difference (degrees) and
the x-axis is the same signal-to-noise ratio (S/N) as in figure 14. It can be
seen in Figure 16 that coherence is extremely variable and does not decrease
as a linear function of signal-to-noise ratio. It can also be seen in Figure 16
that EEG phase differences never approximate 30 degrees and are extremely
variable at all levels of noise.
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Fig—16. Top is coherence (y-axis) vs signal-to-noise ratio (x-axis). Coherence drops off
Rapidly and is invalid. Bottom is phase angle on the y-axis and signal-to-noise ratio on
the x-axis. Phase locking is minimal or absent and unstable throughout the entire
simulation and fails to exhibit the 30 degree phase difference.

Figure 17 are the results of the computation of EEG coherence and
EEG phase differences using the Laplacian reference EEG simulation. The
y-axis in figure 17 (top) is coherence and the x-axis is the signal-to-noise
ratio (S/N). The y-axis in figure 17 (bottom) is phase difference (degrees)
and the x-axis is the same signal-to-noise ratio (S/N) as in figure 14. It can
be seen in Figure 17 that coherence is extremely variable and does not
decrease as a linear function of signal-to-noise ratio. It can also be seen in
Figure 17 that EEG phase differences are invalid and never approximate 30
degrees with high variance at all levels of noise.
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Fig—17. Top is coherence (y-axis) vs signal-to-noise ratio (x-axis). Coherence drops off
Rapidly and is invalid. Bottom is phase angle on the y-axis and signal-to-noise ratio on
the x-axis. Phase locking is minimal or absent and unstable throughout the entire

simulation and fails to exhibit the 30 degree phase difference.

The results of these analyses are consistent with those by
Rappelsberger, 1989 who emphasized the value and validity of using a
single reference and linked ears in estimating the magnitude of shared or
coupled activity between two scalp electrodes. The use of re-montage
methods such as the average reference and Laplacian source derivation are
useful in helping to determine the location of the sources of EEG of different
amplitudes at different locations. However, the results of this study which
again confirm the findings of Rappelsberger and Petsche, 1988
and Rappelsberger, 1989 which showed that coherence is invalid when using
either an average reference or the Laplacian source derivation. This same
conclusion was also demonstrated by Korzeniewska, et al (2003).

The distortion of phase differences by an average reference and the
Laplacian transform are also easy to demonstrate by using calibrated sine
waves. For example, in NeuroGuide click File > Open > Signal Generation
and then create a sine wave at Fp1 of 5 Hz and 100 uV with zero phase shift,




Fp2 of 5 Hz and 100 uV with 20 deg phase shift; F3 of 5 Hz and 100 uV
with 40 deg phase shift; F4 of 5 Hz and 100 uV with 60 deg phase shift; C3
of 5 Hz and 100 uV with 80 deg phase shift; C4 of 5 Hz and 100 uV with
100 deg phase shift; P3 of 5 Hz and 100 uV with 120 deg phase shift; P4 of
5 Hz and 100 uV with 140 deg phase shift; O1 of 5 Hz and 100 uV with 160
deg phase shift and O2 of 5 Hz and 100 uV with 180 deg phase shift. Allow
the remainder of the nine channels (F7 to Pz) to remain at 0 uV and no phase
shift. Then click Ok, click cancel to the subject information panel and then
click View > Dynamic JTFA > Absolute Phase. Change the display time to
3 second and depress the left mouse button over the traces and view the
phase differences in the theta frequency band in the panel to the right (ignore
the other frequency bands because they contain noise). One will see a
systematic increase of phase difference with respect to Fpl with 20 degree
increments in the theta frequency column, just like one would expect. Now,
double click the Average Reference montage in the montage window to the
left of the edit screen and see how the phase differences are now distorted.
Double click Laplacian in the montage window to the left of the edit screen
and see how the phase differences are again distorted. Figure 17b below
compares the phase shift with respect to Fp1 using Linked Ears common
reference (solid black line), the Average Reference (dashed blue line), and
the Laplacian (dashed red line). This is another demonstration of how a
non-common reference like

the the average reference and the Laplacian scramble phase differences and
therefore caution should be used and only a common reference recording
(any common reference and not just linked ears) is the only valid method of
relating phase differences to the underlying neurophysiology, e.g.,
conduction velocities, synaptic rise times, directed coherence, phase reset,
etc.
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Fig. 17b — Demonstration of distortions in phase differences in a test using 20 deg increments
of phase difference with respect to Fpl. The solid black line is using a Linked Ears common
reference which accurately shows the step by step 20 deg. Increments in phase difference.
The average reference (dashed blue line) and the Laplacian (dashed red line) significantly
distort the phase differences.

19- What is “Inflation” of Coherence (and correlation)?

Coherence inflation is defined as any value of coherence (x) greater
than zero when coherence (or correlation) is computed using pure Gaussian
noise in one of the two channels and a pure sine wave in the other channel.

Eq. 20- Coherence Inflation 2 x>0

This is the error term when one of the channels is pure Gaussian noise and
the second channel is signal. Any value of coherence > 0 is due to error
attributable to low degrees of freedom, inadequate signal resolution or too
short of measurement interval, or improper sample rates within that interval,

etc.




Figure 18 below shows an example of a 5 Hz 10uVsine wave in one
channel and 100 uV (p-p) gaussian noise in the second channel. The power
spectrum of the two channels is shown in the upper right panel. Figure 18 is
just one example of the analyses performed by the NeuroGuide Signal
Generator that directly test EEG simulated EEG cross-spectra.

b : [ 10 15 0 E] an
] i Frequency (He)
‘ - Z Score of Absclute Power
4

B A R

——_—

o

| 0000 00:01 0002 00:03 00.04 0005 oo 3 15
requency (Hz)

Figure 18. Screen capture of the NeuroGuide signal generation program.
Top trace is a 5 Hz 10 uV sine wave + 0 noise and the bottom trace is the
mixture of a 5 Hz 10 uV sine wave + 100 uV Gaussian noise.

20- What are the limits of EEG Correlation, Coherence and Phase
Biofeedback

As explained above, correlation and coherence requires averaging of
time series data points in order to converge to an accurate estimate of shared
activity between two time series. This means that correlation and
coherence, unlike absolute power, are not instantaneous and always require
time to compute. The most important factors in EEG correlation and




coherence biofeedback are: 1- The band width, 2- Sample rate and , 3-
Interval of time over which Averaging occurs.

Band width is directly related to the number of degrees of freedom.
The wider the band width, the larger the number of degrees of freedom.
However, with increased band width then there is reduced frequency
resolution. In general, the standard band widths of EEG which are adequate
such as theta (4 — 7.5 Hz), Alpha (8 — 12 Hz), Beta (12.5 — 22 Hz) and
Gamma (25 — 30 Hz), etc. With narrow bandwidths, for example 0.5 Hz or
1 Hz then coherence will equal unity unless there are sufficient degrees of
freedom to resolve true “signals” in the brain, which in the case of the
human scalp EEG a 1,000 Hz sample rate is more than adequate.

Figure 19 below shows the results of tests using mixtures of signal
and noise as in Figure 11 in which mean coherence is the Y — Axis as a
function of sample rate (i.e., 512 Hz top left, 256 top right, 128 bottom left
& 64 Hz bottom right). This figure will be replaced with a series of more
clearly labeled figures in the next version of this paper. For the moment,
accept the fact that the amount of time for averaging on the X - axis (125
msec., 250 msec., 500 msec. and 1,000 msec. results in lower coherence
values, i.e., lower coherence inflation. This test involved computing
coherence between one channel of pure sine waves (10 uV p-p) at different
frequencies (theta, alpha, beta & gamma) and a second channel with pure
Gaussian noise (also 10 uV p-p). It can be seen that the most important
factor in determining coherence “Inflation” is the length of time for
averaging. 1,000 msec. produces coherence = 0.1 (or 10%) inflation.
Inflation is defined above as any value > 0 when pure Gaussian noise is in
one of the channels. 500 msec produces coherence inflation = 0.2 (or 20%)
inflation while 250 msec produces coherence inflation = 0.3 to 0.4 and 125
msec = 0.5 to 0.6 inflation. The coherence inflation is independent of band
width, frequency and sample rate. The only critical factor is the interval of
time over which the average is computed, the longer the interval the lower
the inflation.

The results of these analyses are that a minimum of a 500 millisecond
difference is required when using EEG biofeedback in order to compute an
accurate estimate of coherence or coupling between two time series. With a
500 millisecond average then the amount of inflation is relative low (e.g.,
0.2 or 20%) and as long as the same interval of time of averaging is used
with a normative database, then the Z scores of real-time coherence will be
valid and accurate. As seen in Fig. 19 a sample rate of 1,000 produces even
lower inflation, however, a 1 second difference between a brain event and



the feedback signal may be too long for connection formation in a
biofeedback setting.
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Figure 19. Mean coherence (y-axis) and the integration window size in
milliseconds (x-axis). Top left is sample rate = 512 Hz, top right sample
rate = 256 Hz, bottom left sample rate = 128 Hz and bottom left sample rate
= 64 Hz. The amount of averaging from 125 msec. to 1,000 msec is the
critical variable in minimizing “inflation” and not the sample rate.

Figure 20 below is the same as figure 19, but contains the standard
deviations. A 500 msec. averaging delay = 0.15 standard deviation while
1,000 msec = 0.1 standard deviation.  This figure shows that the choice of
a 500 millisecond integration delay yields a reasonably stable estimate of
coherence when using EEG biofeedback but that shorter intervals, such as
125 msec or 250 msec produce high inflation and high standard deviations
and will not provide a valid “feedback” signal and thus less averaging will
likely reduce neurotherapy efficacy.
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Figure 20. Standard deviations of coherence (y-axis) and the integration
window size in milliseconds (x-axis). Top left is sample rate = 512Hz, top
right sample rate = 256 Hz, bottom left sample rate = 128 Hz and bottom left
sample rate = 64 Hz.

EEG phase is not the same as coherence and it can be computed
instantaneously without averaging. Phase reset curves without averaging
provide a detailed picture of the phase stability between coupled oscillators.
Nonetheless, “instantaneous” phase is variable and it is advisable to average
the phase angles over intervals of time if greater stability is required
especially when using Z score biofeedback.

20A - 19 Channel EEG Biofeedback

This use of the EEG changed dramatically in the 1960s when computers
were used to modify the EEG thru biofeedback, referred to today as
Neurofeedback (NF). Studies by Fox and Rudell (1968); Kamiya (1971) and
Sterman (1973) were a dramatic departure from the classical use of conventional
visual EEG and QEEG in that for the first time clinicians could consider treating a
disorder such as epilepsy or attention deficit disorders and other mental disorders



by using operant conditioning methods to modify the EEG itself. Thus, QEEG
and EEG Biofeedback have a “parent-child” relationship in that EEG Biofeedback
necessarily uses computers and thus is a form of QEEG that is focused on
treatment based on the science and knowledge of the physiological meaning and
genesis of the EEG itself. Ideally, as knowledge about brain function and the
accuracy and resolution of the EEG increases, then EEG Biofeedback should
change in lock step to better link symptoms and complaints to the brain and in this
manner treat the patient based on solid science. To the extent the EEG can be
linked to functional systems in the brain and to specific mental disorders then EEG
Biofeedback could “move” the brain toward a healthier state (i.e., “normalize” the
brain) (Thatcher 1998; 1999). Clearly, the clinical efficacy of EEG Biofeedback
is reliant on knowledge about the genesis of the electroencephalogram and specific
functions of the human brain. The parent-child relationship and inter-
dependencies between QEEG and EEG Biofeedback is active today and represents
a bond that when broken results in reduced clinical efficacy and general criticism
of the field of EEG biofeedback. The traditional and logical relationship between
QEEG and NF is to use QEEG to assess and NF to treat based on a linkage
between the patient’s symptoms and complaints and functional systems in the
brain.  This parent/child linkage requires clinical competence on the one hand
and technical competence with computers and the EEG on the other hand.
Competence in both is essential and societies such as ISNR, SAN, ABEN, ECNS,
BCIA, AAPB and other organization are available to help educate and test the
requisite qualifications and competence to use EEG biofeedback. The parent/child
link 1s typically optimized by following three steps: 1- perform a careful and
thorough clinical interview and assessment of the patient’s symptoms and
complaints (neuropsychological assessments are the most desirable), 2- conduct a
QEEG in order to link the patient’s symptoms and complaints to functional
systems in the brain as evidenced in fMRI, PET and QEEG/MEG and, 3- devise a
EEG biofeedback protocol to address the de-regulations observed in the QEEG
assessment that best match the patient’s symptoms and complaints. This
approach reinforces the close bond between parent (QEEG) and child
(Neurofeedback) and allows for the objective evaluation of the efficacy of
treatment in terms of both behavior and brain function.

Figure one illustrates a common modern quantitative EEG analysis where
conventional EEG traces are viewed and examined at the same time that
quantitative analyses are displayed so as to facilitate and extend the analytical
power of the EEG. Seamless integration of QEEG and Neurofeedback involves
two basic steps: 1- visual examination of the EEG traces and 2- Spectral analyses



of the EEG traces®. Numerous studies have shown a relationship between the time
domain and frequency domain of an EEG time series and LORETA 3-dimensional
source analyses which provide 7 mm’ maximal spatial resolution in real-time
(Pascual-Marqui et al, 1974; Gomez and Thatcher, 2001) (see footnote 6).  There
is a verifiable correspondence between the time series of the EEG and the power
spectrum and LORETA 3-dimensional source localization, for example, visual
cortex source localization of hemiretinal visual stimulation, temporal lobe source
localization of auditory simulation, theta source localization in the hippocampus in
memory tasks, localization of theta in the anterior cingulate gyrus in attention
tasks, linkage between depression and rostral and dorsal cingulate gyrus, etc.* The
number of clinical QEEG studies cited in the National Library of Medicine attests
to the linkage between patient symptoms and functional systems in the brain and
protocols for treatment are commonly guided by this scientific literature .
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Example of conventlonal digital EEG (left) and QEEG (right) on the same screen at the same time. The
conventional EEG includes examination and marking of EEG traces and events. The QEEG (right)
includes the Fast Fourier Transform (Top right) and normative database Z scores (Bottom right).

3 Spectral analysis includes space and time sequences that are transformed such as Joint-Time-Frequency-
Analysis, FFT and all other methods that decompose EEG energies at different frequencies in space and
time.



The Use of 19 Channel Surface QEEG Z Scores and EEG Biofeedback

As described by Thatcher and Lubar (2008), scientists at UCLA in the
1950s (Adey et al, 1961) and later Matousek and Petersen (1973) were the
first to compute means and standard deviations in different age groups and
then Z scores to compare an individual to a reference normative database of
means and standard deviations. The Z statistic is defined as the difference
between the value from an individual and the mean of the normal reference
population divided by the standard deviation of the population. John and
colleagues (John, 1977; John et al, 1977; 1987) expanded on the use of the Z
score and reference normal databases for clinical evaluation including the
use of multivariate measures such as the Mahalanobis distance metric (John
et al, 1987; John et al, 1988). For purposes of assessing deviation from
normal, the values of Z above and below the mean, which include 95% to
99% of the area of the Z score distribution is often used as a level of
confidence necessary to minimize Type I and Type II errors. The standard-
score equation is also used to cross-validate a normative database which
again emphasizes the importance of approximation to a Gaussian for any
normative QEEG database (Thatcher et al, 2003).

The standard concepts underlying the Z score statistic and QEEG
evaluations were recently combined to give rise to real-time EEG Z score
biofeedback, also referred to as “Live Z Score Biofeedback” (Thatcher
1998a; 1998b; 2000a; 2000b; Thatcher and Collura, 2006; Collura et al,
2009). The use of real-time Z score EEG biofeedback is another method to
advance the integration of QEEG and Neurofeedback. The figure below
illustrates the differences between raw score EEG biofeedback and real-time
Z score EEG biofeedback.



Difference Between Standand Neurofeedback vs “Live’ Z Score Neurofeedback
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Diagram of the difference between standard EEG biofeedback and Z score EEG
biofeedback. The top system involves standard EEG biofeedback that relies on raw EEG
measures such as power, coherence, phase, amplitude asymmetries and power ratios and
an arbitrary and subjective threshold value. The bottom system is the same as the top but
with a transform of the raw scores to Z scores and thus a simplification of diverse metrics
to a single metric of the Z score in which the threshold is mathematically defined as a
movement toward Z = 0. The magnitude of the Z score provides real-time feedback as to
the distance between the patient’s EEG and the EEG values in an age matched sample of
healthy normal control subjects.

There are several advantages of real-time Z score biofeedback
including: 1- Simplification by reducing different metrics (power,
coherence, phase, asymmetry, etc.) to a single common metric of the Z
score; 2- Simplification by providing a threshold and direction of change
1.e., Z=0 to move the EEG toward a normal healthy reference population
of subjects,” and 3- improved linkage between patient’s complaints and
symptoms and localization of functional systems in the brain. The next
three figures show examples of how a symptom check list and QEEG
evaluation are linked to give rise to a neurofeedback protocol.

* Simultaneous suppression of excessive theta and reinforcement of deficient beta is achieved by using a
absolute Z score threshold, which is a simplification compared to standard raw score EEG biofeedback.

For example, if the threshold is set to an absolute value of Z < 2, then reduced theta amplitude and elevated
beta amplitude will both be rewarded when the instantaneous EEG event exhibits a Z <2 theta and beta
power value.




Symptom Check List to Creale Hypotheses for Neurofeedback

Symptoms Check List Hypothesis Hypothesis
Symptom / Complaint Severity 1 Channel 1 Region of Interast 1

| Perception of Letters Problems 0 |FP1 || [Anguar-Super Parietal-Supramarginal Gyrus _
Slow Reader 0 FP2 Anterior Cingulate

Problems with Spatial Perception 0 F3 Cingulate Gyrus

Orientation in Space 0 F4 Cuneus

Auditory Sequencing 0 Cc3 Fusform Gyrus

Short-Term Memory Problems 0 = C4 Infedor Frontal-Extra Nuclear Gyrus

Depression 0 P3 Inferior Parietal Lobule

Word Finding Problems 0 Pa Inferior Temporal Gyrus R
Problems Multi-Tasking ] o1 Infedor-Middle-Supenor Occipital Gyrus

Poor Judgement 0 02 a Insula

Attertion Deficits 0 F7 Lingual Gyrus

Hyperactive 0 F8 Medial Frontal-Subcallosal Gyrus

Skilled Motor Movements 0 T3 Middle Frontal Gyrus

Obsessive Thoughts 0 F T4 o Middle Temporal-SubGyral Gyrus B

=

Example of a computer generated Symptom Check list in which the clinician first
evaluates the patient’s symptoms and complaints using clinical and neuropsychological
tools and then enters a score of 0 to 10 based on the severity of the symptoms.
Hypotheses as to the most likely scalp locations and brain systems are then formed based
on the scientific literature that links symptoms and complaints to the locations of
functional specialization. (From NeuroGuide 2.5.7)

Modules or “Hubs” are linked to various basic functional systems that
are involved in cognition and perception (Hagmann et al, 2009; Chen et al,
2008; He et al, 2009). Recent neuroimaging studies show that all of the
various “modules” are dynamically linked and interactive and that sub-sets
of neural groups in different modules “bind” together for brief periods of
time to mediate a given function (Sauseng, and Klimesch, 2008, Thatcher et
al, 2008a; 2008b). An illustration of Brodmann areas and electrodes as
they relate to functional systems is shown in the figure below.
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Example of Brodmann areas as they relate to various general functions and “Hubs” or
“Modules” and scalp electrode locations that “sense” electrical activity generated by
various functional systems.

The linkage of a patient’s symptoms and complaints to the
localization of functional systems in the brain is based on the accumulated
scientific and clinical literature from QEEG, MEG, fMRI, PET and SPECT
studies conducted over the last few decades as well as the basic neurological
and neuropsychological lesion literature. The Russian neuropsychologist
Alexandra Luria (1973) and the American neuropsychologist Hans-Lukas
Teuber (1968) are among the leading scientists to make important linkages
between symptoms and complaints and localization of functional systems in
the brain. The integration of QEEG and EEG biofeedback relies upon such
linkages as the initial stage in the formation of neurofeedback protocols as
illustrated in the figures in this section. The idea is to first produce
hypotheses about likely linkages between a patient’s symptoms and
complaints and the location of functional systems based on the scientific
literature prior to conducting a QEEG. Step two is to confirm or disconfirm
the linkage by evaluating brain locations of deviations from normal using




QEEG and LORETA 3-dimensional imaging and step three is to produce a
biofeedback protocol based on the match between hypothesized locations
and the QEEG and/or LORETA evaluation. Luria (1973) emphasized that
de-regulation of neural populations is reflected by reduced homeostatic
balance in the brain in which symptoms are represented as “loss of function”
that are often accompanied by “compensatory” processes. One goal of the
linkage of QEEG and neurofeedback is to identify and contrast the weak or
“loss of function” components in the EEG from the compensatory processes
where the weak systems are the initial target of the EEG biofeedback
protocol.

individualized Protocol Design Based on Convergence of
QEEG Z Scores and Symptom Check List

Symptom Check QEEG Z Scores LORETA Z Scores
\
RPN RS 19 Fpammes
scL [ (X[ [X

Coherenoe x| | T
Phase Reset

Loreta

Sum _ | [T |Z
Locations

Newrofeedback Control Panel

Flow diagram of individualized protocol design based on linkage of patient’s symptoms
and complaints with surface QEEG Z scores and LORETA Z scores. The columns of the
matrix are the 19 channels of the 10/20 International electrode sites and the rows are
symptoms and QEEG EEG features. Hypotheses are formed as to the most likely
electrode site locations associated with a given symptom and complaint based on the
scientific literature. The hypotheses are then tested based on QEEG and LORETA Z
scores. Weak systems representing “loss of function” are identified when there is a
match of QEEG Z scores with the hypothesized scalp locations based on symptoms.
Compensatory locations are identified by a mismatch between hypothesized symptoms
and complaints and the locations of observed QEEG Z scores. A suggested




neurofeedback protocol is then produced based on the locations of the “weak” systems.

Figure below is an example of a 19 channel surface EEG biofeedback
setup screen in Neuroguide where users can select a wide variety of
measures or metrics all reduced to the single metric of the Z score. This
includes, power, coherence, phase differences, amplitude asymmetries,
power ratios and the average reference and Laplacian montages. 19
channels 1s a minimum number of channels in order to compute accurate
average references and the Laplacian montage which is an estimate of the
current density vectors that course at right angles thru the skull.
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Example of 19 channel surface EEG Z score biofeedback setup screen inside of
Neuroguide.

Multiple frequencies and multiple metrics may be selected in which a
threshold must be reached before a visual and/or auditory reward is given
(e.g., 2 <2.0). The 19 channel Z score approach provides for seamless
integration of QEEG assessment and 19 channel Z score neurofeedback or
treatment. Because there are approximately 8,000 possible instantaneous Z




scores, it is important to limit and structure the biofeedback protocol in a
manner that best links to the patient’s symptoms and complaints. The
linkage of patient’s symptoms and complaints as hypotheses that are
confirmed or disconfirmed by QEEG assessment are used to develop a
neurofeedback protocol. Blind and random selection of Z score metrics
runs the risk of altering “compensatory” systems and not focusing on the
weak or “loss of function” systems that are linked to the patient’s symptoms
and complaints.

The figure below shows an example of a simple 10/20 head display
for feedback where the circles turn green when threshold is met (e.g., Z <

2.0) and provides feedback about the scalp locations that are meeting
threshold.

Nenrofeedback Reinforcement Window — Can Be Moved to a 2™ Monitor

Green = Threshold was reached

Threshold is < Z value set in
the Surface NIF Wiandow

Refmiomcement requires that
100'% of the time poimts i a
250 msec 1o 1 sec window
are less fhan the Z fhreshoid

10420 Scalp Locations

’ ° ’

Example of 19 channel feedback display. The circles at a particular location turn green
when threshold is reached, e.g., Z <2.0




The figure below is an example of a progress monitoring chart that is
displayed for the clinician during the course of biofeedback. One strategy is
to develop a protocol based on the linkage to the patient’s symptoms and
complaints as discussed previously and then to set the Z score threshold so
that it is easy for the subject to meet threshold and thus produce a high rate
of successful ‘Hits’ or rewards. Step two is to lower the threshold and make
the feedback more difficult, e.g., Z < 1.5 and as the patient or client gains
control and receives a high rate of reinforcement to again the lower the
threshold, e.g., Z < 1.0 in a “shaping” process in which operant conditioning
is used to move the patient’s brain metrics toward the center of the normal
reference population or Z = 0.

Neuwrofeedback Progress Window — Monitor the ClientfPatient’s Progress
Percentage of tine windows that
received reinforcement

Percent Criteria /

100 /

80

60

40

20

0

00:00 00:05 00:10 00:15 00:20 00:25 00:30

30 second window of events that met crileria

Example of one of the progress charts that a clinician views during the course of
neurofeedback. The idea is to shape the patient’s brain toward the center of the normal
healthy reference population where Z = 0. Initially the threshold is set so that the patient
receives a high rate of reinforcement, e.g., Z < 2.0, then to lower the threshold and make it
more difficult, e.g., Z < 1.5 and then as the patient again receives a high rate of
reinforcement to again lower the threshold, e.g., Z < 1.0 so as to shape the brain dynamics
using a standard operant conditioning procedure.




Neurolmaging Neurofeedback or Real-Time LORETA Z Score
Biofeedback

Improved accuracy in the linkage between a patient’s symptoms and
complaints and the localization of functional systems can be achieved by the
biofeedback of real-time 3-dimensional locations or voxels in the brain.

This method has been successfully implemented with functional MRI (i.e.,
fMRI) for chronic pain, obsessive compulsive disorders and anxiety
disorders (Apkarian, 1999; Yoo et al, 2006; Weiskopf et al, 2003; Cairia et
al, 2006; Bray et al, 2007; de Charms et al, 2004; de Charms, 2008). The
figure below shows an example of fMRI biofeedback displays

Information from individual spatial points can be segregated into multiple anatomically
defined three-dimensional regions of interest. Here the activation levels (represented as
colours) of three brain regions are rendered on a translucent ‘glass brain’ view. (d) -
Activation in these regions can either be plotted second-by-second in real time or can be
presented to subjects in more abstract forms, such as this virtual-reality video display of a
beach bonfire, in which each of the three elements of the flickering fire corresponds to
activation in a particular brain region. Brain activation can control arbitrarily complex
elements of computer-generated scenarios. (From de Charms, 2008).

However, fMRI biofeedback also referred to as Neuroimaging
Therapy has several significant limitations in comparison to LORETA 3-
dimensional EEG biofeedback’: 1- A long time delay between a change in
localized brain activity and the feedback signal, e.g., 20 seconds to minutes
for fMRI while LORETA EEG biofeedback signals involve millisecond

> LORETA means “Low Resolution Electromagnetic Tomography” (Pascual-Marqui et al, 1994). Since
the inception of this method in 1994 there have been over 500 peer reviewed publications (see
http://www.uzh.ch/keyinst/NewLORETA/QuoteLORETA/PapersThatQuoteLORETAOS.htm for a partial
listing of this literature).




delays; 2- fMRI only provides indirect measures of neural activity because
blood flow changes are delayed and secondary to changes in neural activity
whereas EEG biofeedback is a direct measure of neural electrical activity
and, 3- Expense in which fMRI costs 3 million dollars for the MRI machine
plus $30,000 per month for liquid helium whereas EEG biofeedback
equipment and maintenance costs are less than $10,000. The spatial
resolution of LORETA source localization is approximately 7 mm® which is
comparable to the spatial resolution of fMRI.® fMRI, however, offers the
advantage of imaging of non-cortical structures such as the striatum,
thalamus, cerebellum and other brain regions where as QEEG is limited to
imaging of cortical dipoles produced by pyramidal cells. Nonetheless, even
with this limitation several studies have proven that biofeedback using
LORETA real-time 3-dimensional sources is feasible and results in positive
clinical outcomes (Lubar et al, 2003; Cannon et al, 2005; 2006a; 2006b;
2007; 2008). The next two figures shows examples of LORETA EEG
biofeedback of the anterior cingulate gyrus and corresponding increases in
current density as a function of biofeedback sessions.

Raw current source density values from
Anterior Cingulate gyrus (ACC) activation
in EEG Neuroimage Neurofeedback.
Subjects viewed a bar graph and were
instructed to increase the height of bar
graph which was coupled to an increase in
the real-time current source density of the
ACC (14-18 Hz) in the intra-cranial region
of seven voxels® (ROI). From Cannon et al,
2006a

% The voxel resolution of LORETA is 7 mm® which is adequate spatial resolution because the Brodmann
areas are much greater in volume than 7 mm®. Also, the biological resolution of functional MRI may be
worse than LORETA because it depends on the vascular architecture of the brain. For example, Ozcan et
al (2005) showed that maximal fMRI spatial resolution is > 12 mm®.




Learning curves for AC as a result of training in AC, LPFC, RPFC
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Increase in current density (14—18 Hz) from three different ROIs, resulting from training
of the Anterior Cingulate gyrus (AC). LPFC = left pre-frontal cortex; RPFC = right pre-
frontal cortex. The AC appears to influence increases in the LPFC & RPFC higher than
the increase for itself although all three ROIs increased current density as a function of
training. Corresponding improvements in working memory and attention were also
measured. From Cannon et al, 2009.

21 — Coherence, Phase and Circular Statistics

Phase angle has an intrinsic discontinuity, for example consider the
linear and circular distributions of 360 equidistant points. In the linear
distribution 0 and 360 are at opposite ends while in the circular distribution
0° = 360" (Jammalamadaka and SenGupta, 2001). To evaluate phase angles
it 1s necessary to use vector algebra and compute a mean vector with
magnitude or length r, and a direction ® and to calculate the average x and y
components of the mean vector:

Eq. 21 - X = %Zn: [sin(r, ) +sin(er, ) + sin(ez, ) +...sin(er, )]
i-1

n

Eq. 22 - y= [cos(o:1 ) + cos(a2 ) + cos(oz3 )+ ...cos(ozn )]

1
ni-




where n i1s the number of observations and o, is the ith observation.

The length or magnitude of the mean vector is:
Eq. 23 - r={x’+y’
And the vector mean direction is:
Eq. 24 - @ = arctan(X/ )

The magnitude of the mean vector gives an indication of the relative
dispersion or coherence of the observations. The range ofris 0.0 to 1.0. If
the phase angles or differences are clustered or clumped together in one
direction then r will approximate 1. If the phase differences are random over
the interval, then r will be small and approximate 0. The statistical
computation of the cross-spectral “atoms” provides a complete description
of the EEG phase locking, synchrony and phase angles (also phase resetting
if differences or derivatives as a function of time are used).

Eq. 25 - Angular variance: s* = 2(1-r)
This 1s equivalent to variance in linear statistics.
Eq. 26 - Angular deviation: s = 2(1-r)"

This is equivalent to standard deviation in linear statistics.



Coherence is high when phase delays are clusiered
or grouped together. Magnilude of coherence =r
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Coherence is lower when phase delays are scattered

Fig. 21 — Circular synchronization index. r = magnitude of coherence

22 — Phase straightening

As mentioned previously phase angle has an intrinsic discontinuity,
where 0 and 360 are at opposite ends while in the circular distribution 0° =
360" (Jammalamadaka and SenGupta, 2001). A method to remove
discontinuities due to the mathematical limit of the arctangent is a procedure
called “phase straightening” by Otnes and Enochnson (1972, p. 238). The
procedure involves checking for a large jump which happens when the phase
goes from + 180° to — 180° and then adding or subtracting 360° depending
on the direction of sign change. For example, A0 = (180 —¢)° + (180 —¢)" =
360" - 2¢ which is the same as 2¢ since -(180 — €)° = 180 + &. This
procedure results in phase being a smooth function of time or frequency and
removes the discontinuities. The programmer needs only to keep track of
the number of winds around the circle also called the “winding number” if
absolute phase differences are needed.




Phase Straightening
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Fig. 22 — Illustration of phase straightening where the change or discontinuity from — 180° to +
180° is removed by adding or subtracting 360° depending on the direction of change (adapted
from Otnes and Enochson, 1972).

Phase straightening is important when computing the first and second
derivatives of the time series of phase differences because the discontinuity
between — 180° to + 180° can produce artifacts. All of the derivatives and
phase reset measures in this paper were computed after phase straightening
in order to avoid possible artifact.

23 — EEG Spindles and Burst Activity

The human Electroencephalogram is characterized by electrical events
that have a specific shape and physiological origin called “spindles” or
“burst activity”. A spindle is defined as a rhythmic and sequential build up
of EEG amplitudes that wax and wane and appears as an “envelope”
structure. Spindles are also referred to as augmenting and recruiting
responses (Steriade, 1995). Spindles are especially prevalent during late
drowsiness and sleep, however, spindles also occur during waking and
focused attention. In animal studies spindle like responses referred to as




“augmenting responses” can be produced by thalamic stimulation and
involve activation of the upper layers of the cortex and are typically negative
in polarity as the first event in the sequential build up of voltages.
“Recruiting responses” also have a spindle like structure but the first wave is
positive in polarity at the scalp surface and involves activation of the lower
layers of the cortex (Steriade, 1995). Both augmenting and recruiting
responses exhibit the same spindle like “envelope” shape but have different
initial polarities and are not easy to distinguish in the human EEG record.
For this reason, Steriade (1995) recommends that one refer to all spindles as
“augmenting responses’.

There are several methods that are used to quantify “spindle” or
augmenting response structure such as the inter-spindle interval, spindle
peak amplitude and spindle duration. Figure 23 shows an example of how
NeuroGuide quantifies spindle activity using JTFA and the time series of
instantaneous spectral measures (go to www.appliedneuroscience.com down
load the free demo).

Simulaied Spindies

Instantaneous Spindie Power

Diplay Tine | 0000 0001 0002 00.03 0004 0005 o
- t

Fig. 23— Top are simulated spindles and bottom is the time series of the instantaneous
power of the spindles. Quantitative measures of spindle duration, intensity and average
inter-spindle intervals are computed. The Full Width Half Maximum (FWHM) is a



http://www.appliedneuroscience.com/

measure of the area under the curve and is also a measure of the duration of the spindle or
“burst” activity. Example produced using NeuroGuide demo software from
www.appliedneuroscience.com.

24 — The Bi-Spectrum and Bi-Coherence and Bi-Phase Difference

Another method to quantify burst activity and brain connectivity as it
relates to bursts is the Bi-Spectrum which is divided into auto-channel cross-
frequency (single channels different frequencies) and cross-channel cross-
frequency (different frequencies in different channels). There are several
different definitions of the Bi-Spectrum. One is by Hasselman et al, (1963)
as the 3™ moment statistical property called “skewness” which was used to
detect nonlinear interacting ocean waves. Brillinger and Rosenblatt (1967)
elaborated and described the computation of the tri-spectrum as the 4™
power statistical moment or “kurtosis”.  The application of this definition
of bi-spectra is purely statistical and it is primarily used to detect non-
linearities. The second definition of bi-spectra is by Bendat and Pearsol
(1980) in which bi-spectra are produced by partial-coherence analyses in
order to isolate the covariances between different frequencies and locations.
The bi-spectrum using partial-coherence is a measure of the association
between different frequencies and different inputs, for example, a measure
of the phase consistency and the phase difference between theta and beta
frequencies (Helbig et al, 2006). Witte et al (1997) and Helbig et al (2006)
provide detailed time-series analysis and mathematics of the bi-spectrum, bi-
amplitude, bi-coherence and phase bi-coherence. In the present paper we
use the Bendat and Piersol (1980) approach to bi-spectra and bi-coherence to
develop measures of coherence and phase differences between different
frequencies within a single channel (auto bi-coherence and bi-phase) and the
correlation between frequencies in different EEG channels or sensors (cross
bi-coherence and cross bi-phase).

To calculate bi-coherence, it 1s necessary to multiply two complex
domain transforms of the digital time series to obtain a 3™ order transform
and because of the linearity of the transforms and the need for real-time
computations we transform each instant of time for X to the complex
domain by multiplying a time series by a sine and cosine sine wave at a
specific center frequency and band width followed by low-pass filtering.
This well established signal processing method is called “complex
demodulation” (Otnes and Enochson, 1972) and is equivalent to a Hilbert
transform that refer to it as a complex demodulation transform or “CDF”
where each time point is represented as a point on the unit circle 0 to 2pi.




This is an instantaneous cosine and sine representation of a time series from
which the time series of the “cospectrum” and “quadspectrum” are
computed from the cross-spectrum (see Appendix B for the mathematical
details of complex demodulation). As described in section 9 the results of
the CDF is the creation of a new real valued time series. The CDF real
valued time series is then used as the input to spectral analyses for the
computation of bi-coherence and bi-phase.

25- What is the physiological meaning of EEG Auto-Frequency
Coherence (AFC) and Auto-Frequency Phase (AFP)?

Cross-channel Auto-Frequency Coherence and Auto-frequency phase
measure the spatial and temporal relations between EEG “spindles” or “burst
activity” and “rhythmic episodes” as well as the frequency structure of EEG
bursts between two channels but at the same frequency (i.e., auto-
frequency). Complex demodulation of a EEG time series at a given center
frequency measures the instantaneous power (uV?>) of activity at each instant
of time in a frequency band, similar to a filter except that the time series is
represented in the complex domain. The frequency spectrum of “spindle
activity” at a given frequency measures spindle duration and inter-spindle
intervals or how common spindles are within a record and auto bi-coherence
shows the phase synchrony of spindle activity at different frequencies within
a channel. Cross bi-coherence measures the phase synchrony of spindle or
burst activity at the same or different frequency in different channels.

The FFT of the complex demodulation time series (x’¢) computes the
inter-burst frequency and average burst duration and burst rise times because
x’¢ is the envelope of the spindle structure of EEG events. For example,
long duration bursts result in high power in the lower frequencies of the FFT
spectrum. Short inter-burst intervals result in high power at higher
frequencies of the FFT spectrum.



FFT of the JTFA Time Series shows high power at low frequencies when
burst durations are long and high power at high frequencies when inker
burst inbervals are short

Inira Burst Inter Burst
Duration Inberval

n‘".'.*;'u'”h‘ a:'ﬂm*ﬂ',':ﬂ*f st J: Al Wd gl AV i

JTFA Beta Band Time Series

Fig. 24 — Top is filtered EEG at 25 — 30 Hz from F8 and reveals the burst structure of the
EEG. Bottom is the complex demodulation (JTFA) time series of instantaneous power
at 25 — 30 Hz (x’;) and represents the integral or envelope of burst activity in the hi-beta
frequency band. Long duration bursts result in high spectral power in the lower
frequencies and short inter-burst intervals result in high spectral power in the higher
frequencies of the spectrum. Analyses were produced using the NeuroGuide Lexicor
demo from the download at www.appliedneuroscience.com




Top - Spontaneows EEG in O2.
Mixture of many diffierent frequencies
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Bottom — Instantaneous Theta Power
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Fig. 25 - Top is the spontaneous EEG from O2. Bottom is the complex demodulation
(JTFA) time series (x’;) of the instantaneous power between 4 — 7 Hz. Peaks in the
JTFA time series represent integrations or the instantaneous envelope of burst activity in
the theta frequency band. Analyses were produced using the NeuroGuide Lexicor demo
from the download at www.appliedneuroscience.com




Top - Spontaneows EEG in O2.
Mixture of many diffierent frequencies
Time Series = X,

Bottom — Instantaneous Beta Power
Peaks are “bursts™ of power in the
Betia frequency band {25 — 30 Hz)
Time Series = X',
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Fig. 26 - Top is the spontaneous EEG from O2. Bottom is the complex demodulation
(JTFA) time series (x’;) of the instantaneous power between 25 - 30 Hz. Peaks in the
JTFA time series represent integrations or the instantaneous envelope of burst activity in
the hi-beta frequency band. Bi-coherence between the two JTFA time series in fig. 20
and fig. 21 measure the phase synchrony of burst activity in the theta and beta frequency
bands. Bi-phase measures the average time differences between theta and beta burst
activity. Analyses were produced using the NeuroGuide Lexicor demo from the

download at www.appliedneuroscience.com




Spectra of the Complex Demodulation Time Series for Theta
{4 — 7 HzZ) and Hi-Beta ({25 — 30 Hz) Fequencies
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Fig. 27 — FFT analyses of the time series of instantaneous power over a 1
minute interval of time in the theta and beta frequency bands.

26- How to compute the Bi-Spectral Amplitude or Cross-Frequency
Correlation

The simplest of the Bi-Spectral measures is the correlation or
covariance of amplitude or power over time between different frequencies.
For example, the covariance or correlation between amplitudes at 6 Hz
(theta) and 15 Hz (beta) over time. One simply computes the correlation
coefficient in a matrix of m x n dimension where m = channels and n =
frequency. The diagonal of the matrix = 1 where the correlation is between
the same channel and the same frequency. In NeuroGuide the matrix is
computed from 1 to 50 Hz at 1 Hz resolution and thus the matrix is 50 x 50 x
171 electrode combinations (actually 171 + 19 [diagonal] = 190). The
equation for this computation is the same as equation 2 used in the spectral
correlation coefficient but expanded to include correlations between
different frequencies.




27- How to compute Auto-channel Cross-Frequency Coherence (ACC)
(same channel different frequencies)
The procedure is:

1-

Transform the digital value of the EEG time series X, in channel X
to a new time series x’; by multiplying each time point by a sine
wave at frequency 1 and a cosine wave at frequency 1. Then, low
pass filter and compute the square root of the sum of squares of the
cospectrum and quadspectrum at each point of time to produce the
new time series x’; (see section 9).

Transform the digital value of the EEG time series X, in channel X
to a new time series x’’; by multiplying each time point by a sine
wave at frequency 2 and a cosine wave at frequency 2. Then low
pass filter and then compute the square root of the sum of squares
of the cospectrum and quadspectrum at each point of time to
produce the new time series x’’; (see section 9).

Compute the coherence of the two time series x’¢ and x’’; from the
same channel for the two frequencies 1 and 2 for each instant of
time.

28- How to compute Cross-Channel Cross-Frequency Coherence
(CCCQC) (different channels different frequencies).
The procedure is:

4-

Transform the digital value of the EEG time series X, in channel X
to a new time series x’; by multiplying each time point by a sine
wave at frequency 1 and a cosine wave at frequency 1. Then, low
pass filter and compute the square root of the sum of squares of the
cospectrum and quadspectrum at each point of time to produce the
new time series X’; .

Transform the digital value of the EEG time series y; in channel Y
to a new time series y’; by multiplying each time point by a sine
wave at frequency 2 and a cosine wave at frequency 2. Then low
pass filter and then compute the square root of the sum of squares
of the cospectrum and quadspectrum at each point of time to
produce the new time series X’ .



Auto-Channel Cross-Frequency Phase (ACFP) and Cross-Channel
Cross-Frequency Phase (CCFP) are computed in the same manner as in
previous sections by computing the arctangent of the ratio of the
quadspectrum to the cospectrum at each moment of time for the two
transformed phase difference time series.

In summary, there are four categories of the bi-spectrum for the
purposes of relating different frequencies: 1- Auto-Channel Auto-Frequency
(AA), 2- Cross-Channel Auto-Frequency (CA), 3- Auto-Channel Cross-
Frequency (AC) and 4- Cross-Channel Cross-Frequency (CC).

29- Auto Channel Cross-Frequency Coherence (ACC) is defined as the
square of the ratio of the cross-spectra within a single channel at two
different frequencies divided by the product of the auto-spectra. For
example, the auto bi-spectrum between the EEG theta frequency (4 - 7 Hz)
and the beta frequency band (25 — 30 Hz) as recorded from electrode
location F3. To compute auto channel cross-frequency coherence one first
transforms each time point to the complex domain using complex
demodulation and then one computes the Fourier transform of the complex
domain time series.

Eq. 27:

Auto Cross-Frequency Coherence (ACC) (f1,f;) after complex demodulation
(x’,y’) is defined as

Q@ fu(x" £,) +b(x' fv(x" £,))* + (X @' fv(x" f,) =b(x' fHu(x" 1,)))*
ACC =" N

2@ )7 +b(x' f,)") D u(x" f,)” +v(x" f,)*)

Where x = frequency activity recorded from a single channel and x’ =
frequency 1 and x’’ = frequency two recorded from the same channel. N
and the summation sign represents averaging over frequencies in the raw
spectrogram or averaging replications of a given frequency or both. The
numerator and denominator of bi-coherence always refers to smoothed or
averaged values, and, when there are N replications or N frequencies then
each bi-coherence value has 2N degrees of freedom.



30- Cross-Channel Cross-Frequency Coherence (CCC) is a measure of
the phase consistency between two different frequencies recorded from two
different locations. For example, the phase consistency between theta (4-7
Hz) and High Beta (20 — 40 Hz) EEG signals in two spatially separated
channels F3 and F4 of the 10/20 system of EEG electrode location.

Mathematically, the Cross-Channel Cross-Frequency Coherence (CCC)
Is defined as the ratio of the auto-spectra and cross-spectra for two
channels, X and Y and two frequencies f; and f,. We again refer to the
definitions of the cospectrum and the quadspectrum (see section 9) and then
we define the cross bi-spectral coherence:

Eq. =28

Q. @(x' fucy' £,) +b(x fv(y' £,)))” + (D (a(x fv(y' f,) =b(x' fu(y' f,))’
ccc=-" N

D @ f)? +b(x' £,)") > u(y' £,)* +v(y' f,)?)

Where x” = channel 1 and y’ = channel 2, f; = frequency 1 in channel 1 and
f, = frequency 2 in channel 2. N and the summation sign represents
averaging over frequencies in the raw spectrogram or averaging replications
of a given frequency or both. The numerator and denominator of bi-
coherence always refers to smoothed or averaged values, and, when there are
N replications or N frequencies then each bi-coherence value has 2N degrees
of freedom.

31- Bi-Spectral Phase
Bi-spectral phase difference is generically defined as:

Eq. 29 -

Phase difference (f,,f,) = Arctan (Smoothedquadspectrum( f,, f,))

(Smoothed cos pectrum( f,, f,))

Like bi-coherence there are two subdivisions of bi-spectral phase: 1- Auto
Bi-spectral phase and 2- Cross Bi-spectral phase.



32- Auto-Channel Cross-Frequency Phase Difference (ACP) is a
measure of the phase difference between two phase difference time series at
two frequencies recorded from one location.  Phase difference between
two time series and two frequencies is defined as a point on the unit circle
and 1s represented in degrees or radians and is “normalized” with respect to
frequency (i.e., independent of frequency because r = 1). For example, a
phase difference of 45° is the same for the standard EEG frequency bands of
delta, theta, alpha, beta, gamma, etc. Because of this fact and because of the
physics of superposition of waves the bi-spectral phase measure is a useful
measure of local generator signals that are coupled at different frequencies
and exhibit bi-frequency phase locking. The first and second derivatives of
bi-frequency phase coupling are similar to the inter-coupling measures and
are useful measures of “transition states” or bifurcation points and stability
measures of homeostatic systems measured from a single location and given
superposition of waves from many different locations.

The equation for use with a hand calculator to compute Auto Bi-Spectral
Phase (f}, f,) or ACP is:

Eq. 30

Z(a(x' fl)V(X” fz) - b(X' fl)u(x” fz))
ACP = Arc tan &
2 @ fou(x" £,) +b(x' fv(x" f,))

Where x’ = frequency 1 and x’’ = frequency two recorded from the same
channel and N = number of time samples (for cospectrum and quadspectrum
calculation see section 9).

33- Cross-Channel Cross-Frequency Phase Difference (CCP) is a
measure of the phase difference between two real valued phase difference
time series at two frequencies recorded from two different locations. This
is an important measure of network dynamics and communication at
different frequencies across space. Because instantaneous phase is a scalar
and a real number then the commutation properties of algebra hold and the
use of the Fourier transform is valid to compute the arctangent of the
quadspectrum and cospectrum. Phase difference between two locations and
two frequencies is defined as a point on the unit circle and is represented in



degrees or radians and is “normalized” with respect to frequency (i.e.,
independent of frequency because r = 1). For example, a phase difference of
45° is the same for the standard EEG frequency bands of delta, theta, alpha,
beta, gamma, etc. Because of this fact and because of the physics of
superposition of waves the bi-spectral phase measure is a useful measure of
local and distant coupling by frequency and phase locking. The first and
second derivatives of bi-phase coupling are useful measures of “transition
states” or bifurcation points and stability measures of homeostatic systems
(similar to their application to phase reset described in section 9).

The equation for use with a hand calculator to compute Cross Bi-Spectral
Phase or CCP is:

Eq. 31-

Z((a(x' fov(y' f,)—b(x' f)Hu(y'f,))
CCP = Arctan <
Z((a(x' fouCy' f,)+b(x' fv(y'f,))

34- Coherence of Coherence

Defined as the average Coherence between two time series of
instantaneous coherence for a pair of electrodes with a common reference.
The importance of a common reference is because algebraic subtraction
occurs only by virtue of a common reference whereas an average reference
or a Laplacian reference mixes signals from all leads into each of the
remaining leads thus eliminating valid and meaningful algebra. A view of
all pair wise combinations of “Coherence of Coherence” for 19 leads = 171
combinations using Cz as the reference electrode is in Figure 28.



Montage: Default EEG ID: Cz-Theta-AbsPhase

Delta Coherence

Fig. 28 — Example of coherence of coherence for all 171 combinations of 19
electrodes. Analyses were produced using the NeuroGuide Lexicor demo from the
download at www.appliedneuroscience.com

35 — Phase Difference of Coherence

Defined as the average Phase difference of the time series of
instantaneous coherence between any pair of electrodes with respect to a
common electrode. For example, the two time series of instantaneous
coherence between Cz-P3 and Cz-P4 are the input to the phase analysis in
which the average phase difference between the two time series of coherence




exhibits statistically significant phase stability over time (i.e., significant
coherence values). An example of 19 leads = 171 combinations is in
Figure 29.

Montage: Default EEG ID: Cz-Theta-AbhsPhase

Theta Phase Difference (Degree)

Fig. 29 — Example of phase difference of the time series of instantaneous
coherence for all 171 combinations of 19 electrodes. Analyses were
produced using the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com

36 — Coherence of Phase Differences
Defined as the average Coherence of the time series of instantaneous
phase differences between any pair of electrodes with respect to a common



electrode. For example, the two time series’s of instantaneous phase
difference between Cz-P3 and Cz-P4 are the input of the coherence analysis
in which coherence between the two time series of phase difference exhibits
statistically significant phase stability over time (i.e., significant coherence
values). An example of 19 leads = 171 combinations is in Figure 30.

Montage: Default EEG ID: Theta-CZ-Abs Phase

Delta Coherence

Fig. 31 — Example of coherence of the time series of instantaneous phase
differences for all 171 combinations of 19 electrodes. Analyses were
produced using the NeuroGuide Lexicor demo from the download at




www.appliedneuroscience.com

37 — Coherence Between Two Time Series of Phase Resets

Defined as the average Coherence of the First Derivative of the Time
Series of Instantaneous Phase Differences (i.e., “Phase Reset”) between any
pair of electrodes with respect to a common electrode. For example, the
two time series of phase resets for Cz-P3 and Cz-P4 are the input to the
coherence analysis in which there is significant phase stability between the
two time series of phase reset. See section 15 for an explanation of phase
reset. An example of 19 leads = 171 combinations is in Figure 31.



IMontage: Default EEG ID: Cz-absphase-theta

Delta Coherence

Fig. 31 — Example of coherence of the time series of instantaneous phase re-
set for all 171 combinations of 19 electrodes. Analyses were produced
using the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com

38 — Phase Difference Between Two Phase Difference Time Series
Defined as the average Phase difference of the Time Series of
Instantaneous Phase Differences between two channels with respect to a
common reference. A map of all pair wise combinations (19 leads =171
combinations with respect to Cz) is useful to visualize the full manifold of



relationships as defined by the phase difference of the time series of phase
differences. An example of 19 leads = 171 combinations is in Figure 32.

Montage: Default EEG ID: Theta-CZ-Abs Phase

Delta Phase Difference (Deg)

Fig. 32 — Example of phase difference of the time series of instantaneous
phase differences for all 171 combinations of 19 electrodes. Analyses were
produced using the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com




39 — Phase Difference of Phase Reset

Defined as the average phase difference of the First Derivative of the
Time Series of Instantaneous Phase Differences (i.e., Phase Reset) between
two electrode combinations referenced to a common reference as explained
in section 34. See section 15 for an explanation of phase reset. An example
of 19 leads = 171 combinations is in Figure 33.

Montage: Default EEG ID: Cz-absphase-theta

Delta Phase Difference (Deg)




Fig. 33 — Example of phase differences of the time series of instantaneous
phase re-set for all 171 combinations of 19 electrodes. Analyses were
produced using the NeuroGuide Lexicor demo from the download at
www.appliedneuroscience.com

40 — Bi-Spectral Cross-Frequency Power Correlations

A common method of evaluating bi-spectral relations is to compute
the cross-frequency power correlation (Linas et al, 2005). The method
involves computing the covariance of power at each frequency bin with
respect to all other frequency bins. An example is shown for the cross-
frequency power correlations from 1 to 50 Hz in wakefulness, drowsiness
and sleep in the same subject as shown in

CROSS-FREQUENCY ANALYSES OF BRAIN STATE

AWAKE DROWSY SLEEP — STAGE 1

Fig. 34 — Example of bi-spectrum of cross-frequency power correlations
from 1 to 50 Hz from Cz in the same subject but at different brain states, i.e.,
wakefulness, drowsy and sleep.

41- Cross-Frequency Phase Synchrony or m:n Phase Synchronization




Cross-frequency phase synchrony is also called m:n phase
synchronization (Schack et al, 2002; 2005). Phase synchronization is the
process by which two or more cyclic signals tend to oscillate with a
repeating sequence of relative phase angles. Phase synchronisation is
usually applied to two waveforms of the same frequency with identical
phase angles with each cycle. However it can be applied if there is an integer
relationship of frequency, such that the cyclic signals share a repeating
sequence of phase angles over consecutive cycles. These integer
relationships are the so called Arnold Tongues which follow from
bifurcation of the circle map” (www.wikipedia.org; Pikovsky et al, 2003).

We mathematically define cross-frequency phase synchrony as the
average Second Derivative of the instantaneous phase difference between
different frequencies. Different frequencies, e.g., 4 Hz vs. 7 Hz results in a
continuum of changing phase differences and in beat frequencies (frequency
mixing). However, when the two frequencies are coupled and do not
change over time (i.e., phase synchrony), then the first derivative of the
phase difference between two different frequencies is constant. That is, if
two different frequencies are coupled over time then the 1* derivative is
constant, although different depending on the difference in phase angle. In
order to measure phase synchrony across frequencies it is necessary to
compute the 2™ derivative of the phase differences which = zero when there
is phase synchrony. That is, a constant first derivative results in a zero 2™
derivative. Thus, the average 2™ derivative is a direct measure of cross-
frequency phase synchrony, because the lower the average 2" derivative
then the greater is phase synchrony across frequencies. Figures 35 to 39
illustrate the measure of cross-frequency phase synchrony and Figures 40
and 41 are examples of cross-frequency phase shift duration and cross-
frequency phase lock duration.
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Fig. 35 — Example of 4 different frequencies and their phase relations.
Instantaneous phase differences change at each moment of time.
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Fig. 37 — Example of a measure of cross-frequency phase synchrony which
is defined as maximal when the 2" derivative of the phase difference time
series = 0 or the average 2" derivative approximates zero. The lower the

average 2" derivative then the greater is cross-frequency phase synchrony or
n:m phase synchrony.

Figure 38 summarizes the important relationship between cross-

frequency phase locking and the constant phase differences and the 2™
derivative = 0.
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Fig. 38 — Illustrates the constant phase differences as a function of time when two
different frequencies are phase locked. Cross-frequency phase locking and cross-
frequency phase shift are measured by the 2™ derivative of instantaneous cross-frequency
phase differences which = 0 when there is phase locking and is > 0 when there is a cross-
frequency phase shift.

Figure 39 illustrates the measures that are computed in order to
quantify cross-frequency phase lock duration and cross-frequency phase
shift duration in milliseconds. The average magnitude of phase locking is
directly related to the average magnitude of the 2" derivative during the
phase lock periods.
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Fig. 39- Illustration of how cross-frequency phase lock duration and cross-frequency
phase shift duration are measured and quantified in milliseconds.

Figure 40 shows an example of cross-frequency phase shift duration and
figure 41 shows and example of cross-frequency phase lock duration in
milliseconds for each cross-frequency coupling.




FP1 Cress-Frequency Phase Lock Duration

Fig. 40- Example of cross-frequency phase lock duration (msec) of the EEG
recorded from Fpl with respect to the 18 remaining scalp electrodes. This
figure can be generated using the free NeuroGuide demo that can be
downloaded at www.appliedneuroscience.com




FP1 Cross-Frequency Phase Shift Duration

Fig. 41- Example of cross-frequency phase shift duration (msec) of the EEG
recorded from Fpl with respect to the 18 remaining scalp electrodes. This
figure can be generated using the free NeuroGuide demo that can be
downloaded at www.appliedneuroscience.com
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43- Appendix - A
A.1 — Minimization of RMS Error

Time series are sequences, discrete or continuous, of quantitative data of specific
moments in time. They may be simple such as a single numerical observation at each
moment of time and studied with respect to their distribution in time, or multiple in which
case they consist of a number of separate quantities tabulated according to a common
time base (e.g., a mixture of sine waves beginning at time = 0).

The statistics of a time series is the science of predicting an immediate or long
time future sequence based on a sample of past sequential quantitative data. In general,
the longer the sample of past quantitative moments of time then the greater the accuracy
of predicting future sequence(s).

The fine details of accuracy of prediction of the future based upon past samples is
generally governed by the relationship of 1/ sq rt. of N. To understand why this is the
case let us define a statistic of a time series based on the “signal” or “message” that is
transmitted and the “noise” or randomness that the signal is embedded in. This
relationship was described by the Nobel laureate Normbet Wiener (N. Wiener, Time
Series, MIT Press, Cambridge, Mass., 1949) in which a time series is a combination of a
signal + noise or the signal f(t) and the message g(t) + noise, where noise is defined as
f(t) — g(t). In other words noise is defined as the difference between the “message” and
the measured quantitative values or f(t) — g(t). For example, noise =0 when f(t) — g(t) =
0.

Let us consider the output of an electrical circuit with input f(t). If the circuit has
the response A (t) to a unit-step function, then the output is given by:

F(t) = TA‘ () f(t—7)d7+ A0) f ()

The goal is to have F(t) approximate as closely as possible the message g(f). That
is, we want to minimize [F(t) — g(t)]. As a criterion



The Ergotic goal of time series statistics is to minimize the difference between the
measured values f(t) and the “signal” g(t).

The time series can be divided into two general categories: 1- the statistics of short-time
biological data and other short-time interval events such as economic, sociological, etc.
and 2- long time span events such as astronomical, meterological, geologic and
geophysical data . ... ... — to be continued

44- Appendix — B

Instantaneous Coherence and Phase Difference

Complex demodulation was used to compute instantaneous coherence and phase-
differences (Granger and Hatanaka, 1964; Otnes and Enochson, 1972; Bloomfield, 2000).
This method first multiples a time series by the complex function of a sine and cosine at a
particular frequency followed by a low pass filter which removes all but very low
frequencies and transforms the time series into instantaneous amplitude and phase and an
“instantaneous” spectrum (Bloomfield, 2000). We place quotations around the term
“instantaneous” to emphasize that there is always a trade-off between time resolution and
frequency resolution. The broader the band width the higher the time resolution but the
lower the frequency resolution and vice versa (Bloomfield, 2000). For example, if we
multiply a time series {x, t=1, ..., n} by sine oot and cos wet and then apply a low pass
filter F, we have

Z!=F(x, sina,t)
Z"=F (X, cosa,t)

12
and 2[(2: )2 + (Z")Z]1 is an estimate of the “instantaneous” amplitude of the

t
’

frequency wpat time t and tan™ —t” is an estimate of the “instantaneous” phase at
t
time t.
The instantaneous cross-spectrum is computed when there are two time series {yx,
t=1,...,n}and {y’, t=1,...,n} and if F [ ] is a filter passing only frequencies near
zero, then, as above

is the estimate of the

R’ =F[y,sinat] + F[y, cosa,t] =‘F[yte‘“’°t]2

amplitude of frequency m at time t and

Fly, sina,t]
Fly, cosw,t]

@, = tan‘l(

J is an estimate of the phase of frequency ® at



time t and since
F[yte'“"’t]: Re"™,
and likewise,
Flyre]=Rre™
the instantaneous cross-spectrum is
oyt 1 A —igt
Vv, =F[ye“ [F[ye ]
- R R'ei[m—fﬂ{]
t° Tt

and the instantaneous coherence is

v

R’R!?

however coherence is computed as the average of the sine and cosine functions over an
interval of time or

é(t’w) = Rt/l_:\)‘fz

t

The instantaneous phase-difference is @, — got' which is also the arctan of the imaginary
part of V; divided by the real part (or the quadspectrum divided by the cospectrum).

Computation of the First Derivatives of the Time Series of Coherence and Phase
Angles

The first derivative of the time series of phase-differences between all pair wise
combinations of two channels was computed in order to detect advancements and reset of
phase-differences. The Savitzgy-Golay procedure was used to compute the first
derivatives of the time series using a window length of 3 time points and the polynomial
degree of 2 (Press et al, 1994).  The units of the 1 derivative are in degrees/point which
is normalized to degrees/second and degrees/millisecond in the case of EEG. The second
derivative was computed using a window length of 5 and a polynomial degree of 3 and is
in units of degrees/second” or degrees/millisecond” in the case of EEG. For simplicity,
in NeuroGuide the units of the first derivative of a phase time series is degrees per
centiseconds (i.e., degrees/cs” = degrees/10 msec.”).
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Listing of the Relevant Connectivity Equations. All of the equations
below can be evaluated using a hand calculator and the equations can
be easily programmed by a competent programmer. See the sections
above for details. The goal is to help develop standardization and
simplification for the implementation of EEG connectivity measures:

1- Pearson Product Correlation Coefficient

o N XY -3 XY
JNEXE-EXFINZY - (Y )]

2- The cospectrum and quadspectrum (see section 9):

a(xf;) = cosine coefficient for the frequency (f;) for channel X
b(xf}) = sine coefficient for the frequency (f;) for channel X

u(yf;) = cosine coefficient for the frequency (f,) for channel Y
v(yf;) = sine coefficient for the frequency (f,) for channel Y

The cospectrum and quadspectrum are algebraically defined as:
Cospectrum (f,,f,) = a(xf,) u(yf,) + b(xf,) v(yf,)

Quadspectrum (fy,f;) = a(xfy) v(yf,) — b(xfy) u(yfy)

3- Auto-spectrum

F(x) = (@ (x) + b* (x))

4- The cross-spectrum amplitude:

=J(@(x)u(y)+b)V(y))* + (@(x)v(y) = b(x)u(y))’
5- Coherence

(2. @0OU(Y) +bOv(Y))* + (D @()V(Y) ~b(x)u(y)))*
Coh (f)= §
() 2. (@) +b(x)*) X u(y)* +v(y)*)




6- Phase Delay or phase difference

2. @(x)v(y) = b(x)u(y))
Phase difference (f) = Arctan &

ZN:(a(X)U(Y) +b(x)v(y))

7- Auto Channel Cross-Frequency Coherence (f;,f;) (ACC) after
complex demodulation:

Q@ fou(x f,) +b(x fv(x" £,))* + (. (@(x fv(x" f,) =b(x fHu(x" ,)))*

s @ f)? +b(x £)*) D ux £,)% +v(x' f,)%)

8- Cross Channel Cross-Frequency Coherence (f,,f,) (CCC) for channels
X and Y after complex demodulation

Q@ fouly' £,) +b(x' f)v(y' f,))* + Q- @x fv(y' f,) =b(x fu(y' £,))°

cce=—1 I
Z(a(x' f1)2 +b(x' fz)z)ZU(y' f2)2 +v(y' fz)z)

9- Auto Channel Cross-Frequency phase difference (f, f,) (ACP) after
complex demodulation

Z(a(X' fl)V(X” fz) - b(X' fl)u(x” fz))
ACP = Arc tan &
2 @ fou(x £,) +b(x' fv(x" f,))

N

10- Cross-Channel Cross-Frequency Phase Difference (f,,f,) (CCP) after
complex demodulation

Z((a(x' fl)V(y' fz)_ b(X' fl)u(y' fz ))
CCP = Arctan &
> (@ fu(y' £,) +b(x' f)v(y' f,))




Equations for sections 31 to 36 will be added in a future update.
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