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Introduction

Recent studies have shown that intelligence iseeleo neural efficiency defined as the capacity
to rapidly recruit large numbers of neurons refémteas neural resources in local collections oirols
called “Hubs” followed by brief phase lock duratsofe.g., 250 msec) during which functions are
mediated. In addition, efficiency is related te tonnectivity between Hubs as measured by coherenc
and phase delays. Hubs are organized in inteemied networks in the brain where each Hub is sgndi
and receiving information from all other Hubs whereelligence is directly related to the capaciy t
efficiently process information locally and to nmmize the burden on compensatory and distant Hubs
(Thatcher et al, 2016; Thatcher, 2012; 2016). e of this document is to describe the detailsa
an index of optimal brain function related to itiggnce and efficiency was developed, testing ands:
validated. We renamed the Brain Optimization in(#&Ol) to the Brain Optimization Index (BOI) to
more clearly reflect the use of the “Peak Perfostarthe individuals with 1.Q. scores120 from the
University of Maryland normative reference databas@n optimal reference population to compute the
statistical distance from using discriminant aney6Thatcher et al, 2003; 2007; 2008). Someef th
figures may still use the word “function”, howevdrere have been no changes in the analyses. The
word “optimization” better fits the purpose andginial intent for the development of of a brain irde

There are three main types of brain connectivitye is structural connectivity as measured by
structural MRI and diffusion tensor imaging. Thes¢l of connectivity is the same whether one igeatir
shortly after death and represents the essentigitgtal infra-structure of the brain. The secand
functional connectivity as measured by EEG cohexemzl fMRI correlations between brain regions. This
level measures the temporal correlation betweenotwoore brain regions and indicates functional
activity shared by the correlated regions. Theltlevel is called effective connectivity whichas
measure of the magnitude and direction of inforaratiow between two or more connected brain regions
(Nolte et al, 2008a; 2008b; Ewald et al, 2013). ddgplogy structural connectivity is like the street
connecting a parking lot to a sports stadium, fimmetl connectivity is the correlation between chesm
the two locations and effective connectivity measuhe direction and magnitude of the flow of peopl
that travel between the two locations.
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An added factor in understanding the nature ofligence and efficiency of information
processing is the relationship between short digt@onnections vs long distance connections in t&mp
networks. For example, in small-world models @ased efficiency is related to increased diffeatiatn
or localization and minimization of long distanamnoections. Consistent with the global efficiency
small-world models are studies showing weak lorsgagice functional connectivity correlated with legh
intelligence Santarnecchi et al, 2014)A complementary finding are correlations withleg intelligence
in short distance EEG electrode combinations uBiEG phase reset which is also consistent with a
small-world model where reduced long distance cotiviey and increased short distance connectivity a
correlated with higher intelligence (Thatcher ¢28l08). The EEG studies are also consistent @idph
theoretical models of intelligence using structii®&l. For example, van den Heuvel et al (2010) Bnd
et al (2009) found that higher 1.Q. negatively etated with path length and path length is inversel
proportional to network efficiency. Thus, bothustiural connectivity and functional connectivity
measures demonstrate a positive correlation beti@emand the efficiency of information processing
networks of the brain.

Recently, our laboratory published a study (Thatehal, 2016) showing significant correlations
between intelligence and estimates of informatlowfusing the phase slope index. While information
flow was present in all subjects, a linear invedationship was demonstrated in which the high@r |
then the less the magnitude of information floonwsstn EEG scalp locations as measured by the phase
slope index (Nolte et al, 2008a; 2008b; Ewald @l 3). Also, the largest difference in inforroati
flow between the high and low I.Q. groups was i fitontal-parietal electrode combinations in thzhal
frequency bands. This finding is consistent wittGEcoherence and phase measures of intelligence
published previously (Thatcher et al, 2007).

Another finding was that differences in informatibow between high and low I.Q. groups were
primarily in long distance inter-electrode combiaas. This finding is opposite to the relationship
between 1.Q. scores and EEG phase reset in whartth isiber-electrode distances (e.g., 6 cm to 12 cm)
were more strongly correlated with intelligencerthiae long inter-electrode distances (Thatchel, et a
2008).



Intelligence, Efficiency and Homeostatic Neuroplastity

The finding of reduced magnitude of informationwlon higher 1.Q. subjects in long distance
inter-electrode combinations is best interpretethecontext of other network correlations with
intelligence. For example, correlations betweeasghshift and phase lock duration were statisyicall
significant in short inter-electrode combinatiohattreflect information processing in local or szgted
clusters of neurons (Thatcher et al, 2008). Dingér the phase shift duration then the highet.®e
where phase shift duration was interpreted asraitewy process to synchronize available neurore at
given moment of time (Thatcher, 2012; 2018he current study when also considering the phesst
relations to intelligence indicates that the lowexgnitude of information flow in high 1.Q. subjects
represents a more efficient local information pesteg where there is reduced demand for neural
resources located in distant clusters of neuroméormation flow occurs in all subjects, howevitre
magnitude of information flow between brain regi@mess in the higher 1.Q. subjects as seen urdic.
This indicates that each network hub receives andssinformation to all other network hubs but if a
given hub has inefficient information processingha local domain then compensatory hubs send
information to the weak hubs in order to achieveimam efficiency of information processing in the
network as a whole.

This is consistent with a homeostatic neuroplastitiodel of intelligence in which maintenance
of an optimal small-world dynamic involves minimagilong distance information processing and
maximizing the efficiency of local information pregsing2® Phase reset operates primarily in the local
hub domain to recruit and allocate resources foiefitly process information while information flow
operates in the long range compartments to compefanefficiencies in the local domain. The
greater the small-world efficiency of the globahior networks then the higher is performance on the
WISC-R I.Q. intelligence test. Graph theoreticaldels of intelligence using structural MRI (van den
Heuvel et al, 2010; Li et al, 2009) found thathggl.Q. is negatively correlated with path lengtid path
length is inversely proportional to network efficgy. All three types of connectivity, that is, stiwral
connectivity, functional connectivity and effectigennectivity demonstrate a positive correlatiotwieen
1.Q. and the efficiency of information processingietworks of the brain. Long distance informadfiiom
and local phase reset are part of the underlyimgualycs in which neural resources are quickly idieti
and allocated in local functional clusters or hab#edded in a small-world network with high speed
homeostatic plasticity to maintain function everewthere is loss of neurons (high resiliency).

Methods

Subjects

A total population of 1,015 rural and amnlbchildren ranging in age from 2 months to 17.&64ry of
age were recruited as part of a Department of Agitical study of the relationship between nutriteord
brain development and this is why no adults beytbedage of 17.54 were included in this study
(Thatcher et al, 1983; 1987; 2003). The study asoved by a University of Maryland Institutional
Review Board (IRB) and informed consent was obthiinem the parents of all the subjects in this gtud
All methods were performed in accordance with #lewant guidelines and regulations. Two data
acquisition centers were established, one at tta tiniversity of Maryland Eastern Shore campus and
one at the urban campus of the University of Margl&chool of Medicine in Baltimore, Maryland.
Identical data acquisition systems were built amlthcated, a staff was trained using uniform praced
and a clinical and psychometric protocol were zgiti in the recruitment of subjects.



An additional group of adult peak performing andcassful business leaders (N = 20) were recruited
from the Arizona State University Department of Bess ranging in age from 25 years to 45 years of
age and also peak performing military officers astPoint (N = 25) age 35 — 40 were recruited and
included in this study as part of the hi-1Q or pg@akforming group.

Inclusion/Exclusion Criteria

From the total of 1,015 subjects, 371 subjectsiranim age from 5 years to 17.58 years were
selected. a neurological history questionnairewgito the child’s parents and/or filled out by each
subject, 2- psychometric evaluation of 1.Q., andfrool achievement, 3- for children the teachan®
class room performance as determined by schookgradd teacher reports and presence of
environmental toxins such as lead or cadmium. Arblegical questionnaire was obtained from all of
the adult subjects >18 years of age and those ichwhformation was available about a history of
problems as an adult were excluded. The inclusibar@ were: 1- no history of neurological disarsle
such as epilepsy, head injuries and reported nadeadlopment and successful school performance, 2-
A Full Scale 1.Q. > 70; 3- WRAT School Achievem@&udores > 89 on at least two subtests (i.e., reading
spelling, arithmetic) or demonstrated successasdlsubjects and 4- A grade point average of 'C' or
better in the major academic classes (e.g., Enghsithematics, science, social studies and history)

Demographic Characteristics

The subjects were made up of 58.9% males, 41.1%léxn71.4% Caucasian, 24.2% African
American and 3.2% oriental. Socioeconomic staté&sSjSvas measured by the Hollingshead four factor
scale. Time of day was randomized and countembathwith half the subjects tested in the morning
and half the subjects tested in the afternoontefgsvere blind as to what the subject’'s 1.Q. orATRor
other inclusion criteria at the time of assignmentorning or afternoon test times. All subjectyay
given an eight-item “laterality” test consistingtbfee tasks to determine eye dominance, two tasks
determine foot dominance, and three tasks to daterhand dominance. Scores ranged from — 8
(representing strong sinistral preference or lafidedness), to +8 (representing strong dextratpmete
or right handedness). Dextral dominant childrenewgefined as having a laterality score o2 and
sinistral dominant children were defined as hawrigterality score of - 2. Only approximately 9% of
the subjects had laterality score2 and 87% of the subjects had laterality scorsand thus the
majority of subjects in this study were right saminant.

As shown in Table I, age was not a confoundingalde because there were no statistically
significant differences in age between differe@. Igroups (low 1.Q. vs hi 1.Q. t = 1.949, df = 1814 =
0.06; low 1.Q. vs middle 1.Q, t = 1.787, df = 1/299= 0.076; hi 1.Q, vs middle 1.Q. t = 1.821, di/298,
P =0.073). Gender was 55.6% male and 44.4% feamaleéhere were no significant differences in
gender between the different 1.Q. groups (t rarfgma 0.059 to 0.295, P values ranged from 0.77 to
0.95). There was a significant difference in tbheieeconomic status of the parents of the high 1.Q.
group vs the low I.Q. group (t = 5.65, P < .05) bat between the middle 1.Q. group and the other tw
groups. The full scale I.Q. and age means, raagestandard deviations of the subjects are shown i
Table 1.

Table |



Group sample sizes and age and 1.Q. Descriptive Statistics

1Q Mean full Full 1Q

Groups N Mean age SD age Age range 1Q SD full IQ Range
5.02 -

Low IQ 71 11.31 3.08 17.18 82.65 6.12 70-90

Middle 5.00 -

1Q 221 10.46 3.26 17.54 105.48 7.54 91-119
514 -

High 1Q 79 9.50 2.85 15.80 128.52 7.68 120 - 154

The three 1.Q. groups were selected solely basdberange of the full-scale 1.Q. scores as
shown in the column to the right in Table I.

Neuropsychological Measures

Neuropsychological and school achievement teste a@ministered on the same day that the EEG was
recorded. The order of EEG and neuropsychologgsting was randomized and counter-balanced so
that EEG was measured before neuropsychologidslitesne half the subjects and neuropsychological
tests were administered before the EEG in the dthkéthe subjects.. The Wechler Intelligence Séaile
Children revised (WISC-R) was administered for widiials between 5 years of age and 16 years and the
Weschler Adult Intelligence Scale revised (WAISviRds administered to subjects older than 16 years.
The neuropsychological sub-tests for estimatingsicale 1.Q. were the same for the WISC-R and the
WAIS and included information, mathematics, vocabyl block design, digit span, picture completion,
coding and mazes.

EEG Recording

Power spectral analyses were performed on 58 sed¢oriminute 17 second segments of EEG recorded
during resting eyes closed condition. The EEG reasrded from 19 scalp locations based on the
International 10/20 system of electrode placemesing linked ears as a reference in the resting eye
closed condition. Subjects were instructed toeclbeir eyes, relax and to try not to move theegsey
during the recording. The trained EEG techniciaege blind as to the subject’s 1.Q. or WRAT and
other inclusion criteria at the time of the EEGameting. The EEG was continually monitored during
acquisition and if any electrodes were bad therr¢herding was paused and the electrode replaced.

All subjects provided 19 channels of EEG plus alapeye monitor channel. Eye movement electrodes
were applied to monitor artifact and all EEG recongere visually inspected and manually edited to
remove any visible artifact. Each EEG record wlagied and visually examined and split-half relldapi
and test re-test reliability measures of the artifeee data were computed using the Neuroguidevaodé
program (NeuroGuide, v2.8.9). Split-half reliatyiltests were conducted on the edited artifact HES
segments and only records with > 90% reliabilityaventered into the spectral analyses. The aragifi



were designed and built by engineers at the NYW8Ichf Medicine and amplifier bandwidths were
nominally 1.0 to 30 Hz, the outputs being 3 db dawthese frequencies. The EEG was digitized @t 10
Hz and up-sampled to 128 Hz and then spectral aedlysing complex demodulatiéh?®

Hilbert Transform of Network Connectivity Measures

After recording the EEG and artifact deleted th€@RETA was computed from the center voxels
of 88 Brodmann areas using the Hilbert transforrnaimpute the cross-spectrum and coherence, phase
differences and the phase slope index (xx) in &t frequency bands (delta, theta, alphal, alpha
betal, beta2, beta3, hi-beta). The phase slogx s a measure of the magnitude and direction of
information flow. For details see Thatcher, e&l16. Absolute or relative power were not used i
these computations and instead only network coivigcanalyses were conducted.

Selection of Variables for Discriminant Analyses Beveen High and Low 1.Q. groups.
The subjects were separated into a high full S€lgroup (1.Q. 120) and a low full scale 1.Q. group (
90 1.Q.) for purposes of the full scale 1.Q. analys In order to assess possible confounding bytag
tests were conducted of differences between ad#ferent 1.Q. groupings (low 1.Q. vs. middle 1.Qow
1.Q. vs. high 1.Q. and middle I.Q. vs. high 1.Q.)he results of the analysis showed that there wer
statistically significant differences in age betwemy of the 1.Q. groupings.

Functional Networks

Table Il shows the twelve networks and the Brodmanaas that comprise each network used to compute
discriminant functions. The smallest number ofdnann areas was in the memory network (4) and the
largest number were in the salience network (13).

Table Il - Twelve Networks and Brodmann Areas that Comprise the Networks

. Networks Brodman Areas

|Addiction 13,24, 25, 32, 34, 44, 45, 46, 47

|Anxiety 4,6,7,10, 13, 21, Amygdala

Attention-Dorsal 6,7,8,9 19 39 40

| Attention-Ventral 10, 11,19, 21, 37, 44,45

|Default Mode 2,7,10, 11, 19, 29, 30, 31, 35, 39, 40

|Executive Function 7.8,9 10, 11,19, 22 37, 40, 46

|Language 22,39, 40, 41, 42, 44, 45

[Memory 28, 34, 35, 36

[Mirror Neuron 1,5,6,13, 27, 40, 44, 45, 46

Mood 10, 11,13, 23, 24, 32, 33, 44,45 47

|Pain 1,2.3,4,5,13, 24,32, 33

;Saljence 8,9, 10,13, 22, 23, 24,25, 29, 30, 31, 32, 33
Results

Discriminant Analysis of High 1.Q. vs Low |.Q. groups



Table Illis a summary of the number of subjects eadsification accuracy of the discriminant anatys
showing a discriminant classification accuracy @® The sensitivity = 97.3% and specificity = 100%
The positive predicted value (PPV) = 100% and negatredicted value (NPV) = 97.5%. An
independent cross-validation test was for the imégliate 1.Q. group (90 < and < 120). As shown in
Table I, the independent cross-validation is whaeeintermediate 1.Q. group was approximately gven
classified in the two extreme high vs low 1.Q. gsewvhich is expected if there is an approximatedmn
relationship between 1.Q. and the phase slope irdémate of information flow.

Table Il

Discrimintant Analysis and Jackknife Replication

Classification Accuracy = 99%

IQ GROUP N IQ<=90  1Q>=120
Full IQ <= 90 n=71 | 71(100%) | 0 (0%)
Full IQ >= 120 n=79 |2(3%) 77 (97%)

90 < Full1Q < 120 n=221 | 100 (45%) | 121 (55%)

Jackknifed Classification Accuracy = 94%

IQ GROUP N Q<=90  1Q>=120
Full 1Q <= 90 n=71 |66(93%) |5(7%)
Full 1Q >= 120 n=79 | 4(3%) 75 (95%)

In addition, as shown in Table Ill a leave-one-gatkknife) cross-validation was conducted
between the high and low 1.Q. groups. The jadikaross-validation yielded an overall classifioati
accuracy = 94%, sensitivity = 94.3% and sped¥fici93.8%. The positive predicted value (PPV) =
93.0% and negative predicted value (NPV) = 94.9%.

Figure 1 shows the distribution of the discriminaobres. The left is a scatter plot of
discriminant scores of the high 1.Q. and low I.@ups. Right is the distribution of discriminacbges
for the high and low 1.Q. groups as well as theilimtediate 1.Q. group. The intermediate subject’s
distribution was midway between the high and loaugs and serves as a cross-validation test. Aiso,
distribution supports a linear relationship betwdemagnitude of information flow and intelligence



Results of High 1.Q. (Peak Performers) and Low L.Q. Subjects
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Fig. 1 — Results of discriminant analyses. Le# scatter plot of discriminant scores of the peak
performer high 1.Q. and low 1.Q. groups. Righthe distribution of discriminant scores for thethand
low 1.Q. groups as well as the intermediate I.Q@ugr. The intermediate subject’s distribution was
midway between the high and low groups and sersesaoss-validation test. Also, the distribution
supports a linear relationship between the discrami scores and intelligence.

Discriminant Scores and the Construction of a BrairOptimization Index (BOI)

The finding of a linear relationship between disgnant scores (DS) and intelligence justifies ushng
peak performing or Hi IQ group as an optimal refeeby which discriminant scores from individuals
can be used to estimate the ‘distance’ the indalickifrom the optimal peak performance group. The
method of computing a Brain Optimization Index w@sompute the mean and standard deviation of the
Hi 1Q peak performers discriminant scores (DS)dach of the 12 networks and then compute a Z score
as a distance metric from the mean of the optimau for a given subject for each of the 12 network
The Zos score = (mean of Hi IQ DS — DS of subject/St. D@¥Hi IQ DS). The 12 functional networks
are based on fMRI and PET scan studies in thousairalshjects which are reviewed in the “Handbook
of QEEG and EEG Biofeedback” (Thatcher, 2012; 2016he 12 functional networks ar@&ddiction,
Anxiety, Attention Dorsal, Attention Ventral, Default Mode, Executive, Language, Memory,

Mirror Neurons, Mood, Pain, Salience.
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The final computation for the Brain Optimizatiordex (BOI) is to compute the average Z score
and display the average Z score for all 12 networksdial. In this way re-tests can be compared i
single simple display as shown in figure fig. 2

Brain Optimization Index

MODERATE
OVERALL EFFICIENCY LEVEL

Fig. 2 — Example of the Brain Optimization IndexJB as the average Z score distance of 12 different
functional networks for a given subject. For exéamphe ' EEG recoding can be made shortly after a
concussion.
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Figure 3 is an example of repeated and sequertE@ Ecordings following a mild TBI. A discriminant
score distance from the peak performing or optignalip for each of the 12 networks were first
computed and then the mean Z score distance wasutedhand scaled from 0 to 10 on the BOI dial in

figures 1 and 2.

Fig. 3- A sequence of EEG recordings from the tohmjury or treatment are displayed in the BOIlldia
Each line is the average distance from mean opéaé performing Hi IQ reference group for eachef h
12 functional networks.

A summary of the Brain Optimization Index constrotis illustrated in figure 4.
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Fig. 4 — lllustration of the construction of theaBr Optimization Index (BOI). Left are the resufsrhe
discriminant analysis that computes the distanted®n Hilbert transform of EEG from the center
voxels of a given functional network. The metmesre network metrics such as LORETA coherence,
LORETA phase difference and LORETA phase slopexribdat were entered into the discriminant
function. A mean and standard deviation of thé@Hgroup was computed for each of 12 functional
networks. Individuals are compared to the refeegmeak performing group by computing the Z score
distance of the individual’s discriminant scoreanfrthe optimal reference group.

Here is a url to a You Tube Video that describesBhain Optimization Index (BOI):

https://lyoutu.be/AY176R4p4F8
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