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1- Introduction 

 A concussion is a traumatic brain injury that alters the way your brain functions. Effects are usually 

temporary but can include headaches and problems with concentration, memory, balance and coordination. 

Although concussions usually are caused by a blow to the head, they can also occur when the head and upper 

body are violently shaken. These injuries can cause a loss of consciousness, but most concussions do not. 

Because of this, some people have concussions and don't realize it.  

Concussions are common, particularly if you play a contact sport, such as football. But every 

concussion injures your brain to some extent. This injury needs time and rest to heal properly. Most concussive 

traumatic brain injuries are mild, and people usually recover fully. 

 The Neural Network Injury Index (NI) is a EEG measure of the extent and severity of a traumatic brain 

injury that is characterized by having a concussion.   The NI is an extension and refinement of the 2004 FDA 

510k registered Mild Traumatic Brain Injury Discriminant Function but adds changes in the connectivity 

between EEG produced in Brodmann areas and connectivity measures at the scalp surface (see Thatcher, et al, 

EEG discriminant analyses of mild head trauma.  EEG and Clin. Neurophysiol., 73: 93-106, 1989 and 

Thatcher, et al, An EEG Severity Index of Traumatic Brain Injury,  J. Neuropsychiatry and Clinical 

Neuroscience, 13(1): 77-87, 2001). However, here we refer to the discriminant function as a Network Injury 

Index (NI) and not a concussion index because the EEG was often measured months and years after the 

concussion.  The NI is not based on the time interval immediately after a concussion and then repeat tests 

following a concussion and nor are the vast majority of QEEG studies on TBI.  Such data are very rare and 

difficult to obtain and are seldom if ever reported in the scientific literature.  Instead, the NI discriminant 

function compares the EEG recorded from severe TBI confirmed by Glasgow Coma Scores (GCS), post 

traumatic amnesia and age matched normal subjects with no history of TBI and then is cross-validated by an 

independent group of subjects and mild and moderate TBI patients.   The NI does not include EEG power or 

current density measures and only includes connectivity measures.   As explained in Thatcher et al (1989; 

1991; 2001; 1998) stretching of axons and dysregulation of nodes of networks is a common consequence of 

rapid acceleration deceleration injuries which forms the rationale for the NI. 

   

2.0 – Methods 

2.1 Subjects 
          A total of 250 normal control subjects were included in this study (age from 15 to 30 years).  The normal 

control subjects had no history of neurological disorders such as epilepsy or concussions and performed within 

the normal range on the WISCR-R neuropsychological tests and were part of the normative database produced 

at the University of Maryland (Thatcher et al, 1987; 2003; 2007). A total of 348 age matched subjects with a 

history of concussion were included in the study.  All of the concussion subjects participated in the Department 

of Defense and Head Injury Program (DVHIP) (Thatcher et al, 1998a; 1998b; 2001; 2003).   The concussion 

subjects were categorized into three groups: 1- Mild (N = 88) defined by a Glasgow Coma Scale (GCS) 13-15, 

Post Traumatic Amnesia (PTA) < 1 hour and either no loss of consciousness (LOC) or less than 20 minute 

LOC; 2- Moderate (N = 138) defined by a GCS 10-12, PTA 1 hour to 6 days and LOC 1 hour to 24 hours and, 

3- Severe (N = 122) defined by a GCS < 7, PTA > 7 days and LOC > 23 hours.  The time between injury and 

EEG test varied from 2 months to 4 years.      

 

2.2 EEG Recording 

 The EEG was recorded from 19 scalp locations based on the International 10/20 system of electrode 

placement, using linked ears as a reference.  Eye movement electrodes were applied to the inner and outer 
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canthus to monitor artifact and all EEG records were visually inspected and manually edited to remove any 

visible artifact.  Two five minutes of EEG was recorded in the eyes closed and in the eyes open condition.   

The order of recording for the eyes open followed by closed conditions and vice versa was counter-balanced 

across subjects. Each EEG record was plotted and visually examined and split-half reliability and test re-test 

reliability measures of the artifacted data were computed using the Neuroguide software program 

(NeuroGuide, v2.8.0). The amplifier bandwidths were nominally 1.0 to 30 Hz, the outputs being 3 db down at 

these frequencies and the EEG was digitized at 100 Hz.  Analyses were performed on 58 seconds to 2 minute 

17 second segments of EEG.  Split-half reliability tests were conducted on the edited EEG segments and only 

records with > 90% reliability were entered into the spectral analyses.     

 

2.3 – Cross-Spectral Analysis and LORETA computation 
   The edited EEG was saved in which the 19 channels were columns and the 256 time points as rows.   

In order to minimize windowing effects 75% overlapping 256 point segments were used according to the 

procedure described by Kaiser and Sterman (2001).   The LORETA analyses were limited to the center voxels 

of the Brodmann areas that comprise eight different functional networks as described in section 2.4. For each 

center voxel cross-spectral analyses using the Hermitian matrix for LORETA implementation were computed 

according to standard procedures for LORETA frequency analyses (Gomez and Thatcher, 2001; Frei et al, 

2001; Pascual-Marqui, 2003).  A cosine taper windowing was performed using the cross-spectral FFT on each 

256 point data sample.  The cross-spectra were averaged across the overlapping windows which yielded a 

total of 61 frequencies from 0.5 Hz to 30 Hz.  The spectral resolution was 0.5 Hz, however, adjacent 

frequency bands were averaged to produce a 1 Hz resolution thus yielding a total of 30 frequency bands from 

1 to 30 Hz.   The Key Institute software was used to compute the T matrix according to the Talairach Atlas 

coordinates of the Montreal Neurological Institute’s MRI average of 305 brains (Pascual-Marqui, 1999; 2003; 

Talairach and Tournoux, 1988).    The computations were restricted to the cortical gray matter according to 
digitized probability atlases (Mazziota et al, 1995).   The spatial resolution is 7 mm for each of the 
Brodmann area center voxels.  The cross-spectral values were computed at 8 frequency bands (Delta 1-4 

Hz; Theta 4-8 Hz; Alpha1 8-10 Hz; Alpha2 10-12 Hz; Beta1 12-15 Hz; Beta2 15-18 Hz; Beta3 18-25 Hz and 

Hibeta or Gamma 25 – 30 Hz). Hz frequency band were multiplied by the T matrix which is a 3-dimensioinal 

matrix of x, y and z current source moments in each of the 2,394 gray matter voxels.  The resultant current 

source vector at each pixel was computed as the square root of the sum of the squares for the x, y & z source 

moments for each 1 Hz frequency band for each subject.   The log transform of the current density values was 

computed but similar statistical findings with nearly identical effect sizes were observed with or without log 

transform.  Therefore, for simplicity only the untransformed current source vectors are used in the present 

study.    

 

2.4 Functional Networks 
 Convergent evidence from different imaging modalities has demonstrated that the human brain 

is a network organized by "Nodes" with linkages and clustering of connections defined as "Modules" 

based on the density of synaptic connections and constituting "Functional Networks" (Achard et al, 

2006; Sporns et al, 2004; Raichle, 2010; Etkin et al, 2009; Petersen and Posner (2012).   Based these 

studies and reviews of functional brain networks we selected a sub-set of eight functional networks that 

are most likely affected by a concussion. The selected networks were:  Anxiety (Etkin et al, 2010); 

Dorsal & Ventral Attention (Petersen & Posner, 2012; Default Mode  (Raichle, 2010: Sridharan et al, 

2009); Language (Mesulam, 2000)  Memory (D’Ardenne et al, 2012);   Mood (Jacobs et al, 2014) and 

Pain (Simonsa et al, 2014; Stern et al, 2006).  These particular functional networks are also reviewed in 

Thatcher, 2012).   
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 Table I shows the Brodmann areas that were selected for the eight functional networks in which 

the LORETA coherence and phase differences were computed from the time series of current density 

produced by the center voxel of each of the 8 functional networks. 

 

Table I -  

LORETA 
Networks: 

Brodmann Areas Total 
Brodmann 

Pairs 

Total 
Coherence 
& Absolute 

Phase 
Variables 

T 

tests 
p < 
.05 

Varimax 
Factor 

Analyses > 
.8    Final 

Reduction 

Anxiety 4,6,7,10,13,21,Amygdala 42 672 265 
(39%) 

20 

Attention 
Dorsal 

6,7,8,19,39,40 30 480 119 
(25%) 

14 

Attention 
Ventral 

10,11,19,21,37,44,45 42 672 246 
(37%) 

19 

Default 
Mode 

7,10,11,19,22,29,30,31,35,39,40 110 1760 454 
(26%) 

24 

Language 22,39,40,41,42,44,45                    Left 
Hemisphere only 

21 336 87 
(26%) 

11 

Memory 7,9,24,30,31,32,33,40,Hippocampus 72 1152 436 
(38%) 

25 

Mood 10,11,13,23,24,32,33,44,45,47 90 1440 452 
(31%) 

23 

Pain 1,2,3,4,5,13,24,32,33 72 1152 398 
(35%) 

26 

 

The Network Injury Index (NI) provides a mathematical scaling to show the severity of 

a concussion between normal subjects with no history of head injury to subjects with severe 

head injuries.  Similar to Thatcher et al (1989; 2001) the NI is based on EEG discriminant 

analyses of 248 subjects (age of 18 - 30 years) between normal and severe TBI groups.  The 

other groups (N = 366) utilized for cross-validation are from other normal, mild TBI, moderate 

TBI and other severe TBI subjects included in the Thatcher et al (1989; 1998a; 1998b; 1998b; 

2001).      

  

2b- Creation of the Test Discriminant Function 

Figure 1 shows the qEEG measures included in the surface EEG discriminant function, 

i.e.,  amplitude asymmetry, coherence, absolute phase, instantaneous connectivity, and lagged 

connectivity.  Each measure using the 19 electrode locations on the International 10/20 system 

using eyes closed linked ears as a reference with 8 frequencies (Delta, Theta, Alpha1, Alpha2, 

Beta1, Beta2, Beta3 and Hi-Beta).  The total number of qEEG variables a given surface EEG 

connectivity measure such as coherence, amplitude difference and phase differences.   Each 

category involved 177 electrode combinations with 10 frequency bands resulting in a total of 
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6,840 veriables per subject.  Each surface EEG connectivity variable was further classified by 

anatomical hemisphere and cross-hemisphere of right, left, homologous, diagonals, and midline.   

 

 

Fig. 1-  Data reduction procedures of computing T-tests between the normal vs severe 

group and then selecting variables that were significant at P < .01 to be entered into factor 

analyses to reduce the data set by selecting variables that loaded > 0.85 on a given factor 

to then enter into a step-wise discriminant analysis.    

 

Surface EEG connectivity data reduction process consisted of using T-tests of p < .01 and 

varimax factor analyses with factor loadings of > .85.  T-tests showed a 44% difference (3,040 

variables) in qEEG data between normal subjects with the severe TBI group.  After T-tests, the 

varimax factor analyses were performed to reduce the data from 3,040 variables to only 126 

variables from factor loadings of > .85. After data reduction, the step-wise forward discriminant 

analysis was performed.  This resulted in a final reduction of 38 total survived variables.   Table 

II shows the results of the test or initial discriminant analysis with a 99% classification 

accuracy. 

 

Table II – Discriminant Test Classification matrix 

Groups: SEVERE TBIs NORMALs % Correct 

SEVERE TBIs (82) 80 2 98% 

NORMALs (166) 0 166 100% 

Total 80 168 99% 

 

2c- Cross-Validation of the Discriminant Function 

 Two separate cross-validation tests were performed: 1- A leave-one-out or Jackknife 

procedure and 2- An independent cross-validation using the unclassified mild and moderate TBI 
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subjects.   The leave-one-out cross-validation  involved each individual subject being removed 

from the analysis and then the analysis repeated and the subject removed was classified as a 

member of either the normal control group or the severe TBI group.  Table III shows that the 

leave-one-out replication had an overall classification accuracy of 97%.   This analysis showed 

high test re-test reliability of the discriminant function. 

 

Table III - Jackknifed classification matrix 

Groups: SEVERE TBIs NORMALs % Correct 

SEVERE TBI (82) 78 4 95% 

NORMAL (166) 3 163 98% 

Total 81 167 97% 

 

The independent cross-validation involved the use of the initial discriminant function equation 

to classify the moderate TBI subjects that were not used in the initial discriminant function.   If 

the effects of rapid acceleration/deceleration on the brain is a linear function of the magnitude of 

the force then the mild and moderate subjects will be located intermediate between the extreme 

of normal and severe TBI and the mild will be closer to the normal than the moderate TBI 

subjects.  The results of the independent cross-validation is shown in Table IV and also in the 

distributions in Figure 3.  These analyses supported both the validity of the discriminant 

function or concussion index and the presence of linearity relating the magnitude of forces 

imparted to the brain and the EEG.    

 

Table IV – Independent Cross-Validation classification matrix 

Ungroups: SEVERE 
TBIs 

NORMAL 
TBIs 

% SEVERE 
TBIs 

%NORMAL 
TBIs 

NORMAL (84) 4 80 5% 95% 

SEVERE TBI (40) 35 5 88% 12% 
MODERATE TBI 

(125) 
122 33 79% 21% 

MILD TBIs (88) 61 27 69% 31% 

 

3- Results: 

3a – Figure two are the distributions of the various groups that were used to produce and cross-

validate the NI.  The y-axis are the percentage of subjects in  a given group and the x-axis are 

discriminant scores that ranged between -7 & +7.   This range was then scaled to range from 0 

and 10 as shown in figure one.  
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Fig. 2 - The y-axis are the percentage of subjects in  a given group and the x-axis are 

discriminant scores that ranged between -7 & +7.   This range was then scaled to range 

from 0 and 10 as shown in figure one.  

 

Figure three is an example of the NI in which 1 to 3 minutes of artifact free EEG is 

submitted to the discrimant function and scaled between 0 = normal and 10 = severe TBI with 

the mild and moderate discriminant scores falling between normal and severe.  The overall 

classification accuracy with cross-validations was 99%.   

 

 
 

Fig. 3 – Example of the Network Injury Index (NI) where the range of discriminant 

scores vary from zero for normal control subjects and 10 for severe TBI subjects.   The 

normal range is 0 to 3.5, mild is 3.51 to 6.5 and severe is 6.51 to 10.0.  The line drawn 
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from the origin indicates the discrimiant score for a given EEG recording.   Multiple lines 

are drawn for multiple EEG recordings to allow one to view the time course of recovery 

from a TBI over successive EEG recordings.   

 

3c- Predicting LORETA Networks using Z-scores 

An approximate linear relationship was present in the cross-validation analyses in which 

the scalp surface discriminant function was normal > mild > moderate > severe.  A separate 

discriminant analysis was also conducted but using LORETA Z scores from the Brodmann 

areas constituting the ten networks shown in Table V.   Only LORETA network measures were 

included in the LORETA discriminant scores similar to the scalp surface discriminant function.   

A list of the LORETA coherence and phase variables used in the discriminant function are in 

Table V.  The same procedures used in Thatcher et al (1989; 2001)  for data reduction were T-

tests (p < .01) and varimax factor analyses (> .8 loading factors).  T-tests showed a 36% 

difference (11,267 variables) between normal subjects and the severe TBI group.  After T-tests, 

the varimax factor analyses were performed to reduce the data from 11,267 variables to only 

127 variables from factor loadings of > .80. After data reduction, the step-wise forward 

discriminant analysis of the LORETA connectivity measures was performed.  Results showed a 

final reduction of 32 total survived variables.  The overall classification is 98% of 

discrimination between normal and severe TBI groups.  

 The LORETA discriminant analysis showed essentially the same discriminant accuracy 

as the surface discriminant function and also was significantly correlated with the scalp surface 

EEG discriminant scores.  Therefore, a linear multivariate regression analysis was conducted 

where the LORETA discriminant function was the dependent variable and the LORETA 

network Z scores were the independent variables. The variables and results of the multivariate 

linear regression are shown in Table VI. 

Figure four are the standard Brodmann Areas used for the network analyses. Each 

variable was classified by anatomical lobe(s) of frontal (F), temporal (T), parietal (P), and 

occipital (O) with the following different combinations of Brodmann pairs:  (F_F,   F_T & T_F,   

F_P & P_F,   F_O & O_F,   T_T,   T_P & P_T,   T_O & O_T,   P_P,   P_O & O_P,   O_O).   
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Fig. 4 – Standard Brodmann areas 

 

 

The LORETA Brodmann area functional variables were the independent variables that were 

independently predicted based on the functional categories of anxiety, attention dorsal, attention 

ventral, default mode, language, memory, mood, and pain.  The Brodmann pairs for each 

network consisted of z-scores from coherence and absolute phase between the center voxels of 

each Brodmann area.   Below is Table V that shows the details of the network statistical 

predictions 

 

Table V -  

LORETA 
Networks: 

Brodmann Areas Total 
Brodmann 

Pairs 

Total 
Coherence 
& Absolute 

Phase 
Variables 

T 

tests 
p < 
.05 

Varimax 
Factor 

Analyses > 
.8    Final 

Reduction 

Anxiety 4,6,7,10,13,21,Amygdala 42 672 265 
(39%) 

20 

Attention 
Dorsal 

6,7,8,19,39,40 30 480 119 
(25%) 

14 
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Attention 
Ventral 

10,11,19,21,37,44,45 42 672 246 
(37%) 

19 

Default 
Mode 

7,10,11,19,22,29,30,31,35,39,40 110 1760 454 
(26%) 

24 

Language 22,39,40,41,42,44,45                    Left 
Hemisphere only 

21 336 87 
(26%) 

11 

Memory 7,9,24,30,31,32,33,40,Hippocampus 72 1152 436 
(38%) 

25 

Mood 10,11,13,23,24,32,33,44,45,47 90 1440 452 
(31%) 

23 

Pain 1,2,3,4,5,13,24,32,33 72 1152 398 
(35%) 

26 

 

 

The discriminant scores showed separation between normal and severe TBI groups and were 

utilized as the dependent variable in the multiple regression analyses for the prediction of the 

LORETA networks. 

 

 

Fig.  5  Distribution of neural network discriminant scores of severe TBI vs. age matched 

normal controls 

 

After conducting the data reduction process for the center voxel of each LORETA network, the 

discriminant scores of the normal and severe TBI groups were correlated with the surviving 
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LORETA network Brodmann pairs of z-scores from LORETA coherence and absolute phase 

differences.  The results produced mostly a high correlation (p <= .0001) between the 

discriminant scores with each LORETA network Brodmann pair z-scores of coherence and 

absolute phase.  After conducting the correlation procedure, multiple regression analyses were 

conducted in which the LORETA discriminant scores were the dependent variables and the 

survived z-scores from each Loreta network Brodmann pairs of coherence and absolute phase 

were the independent variables.  As seen in table VI the multiple regression analyses produced 

highly predicted equations for the LORETA networks using Brodmann pair z-scores for 

coherence and absolute phase differences. 

 

Table VI - Multiple Regression Analyses:  Normals vs Severe_TBIs (n = 248) Dependent 

Variable: DScores (LORETA Discriminant Function 19-Channels).  Independent 

Variables: Z-Scores Network Loreta Brodmann Pairs (Coherence & absPhase 

Differences) 

Loreta 
Networks: 

Probability 
Value      

Multiple 
R 

Squared 
Multiple R 

Adjusted Squared 
Multiple R 

Standard 
Error 

Anxiety p <= 0.000 0.793 0.628 0.596 1.279 

Attention 
Dorsal 

p <= 0.000 0.711 0.506 0.476 1.456 

Attention 
Ventral 

p <= 0.000 0.751 0.564 0.528 1.382 

Default Mode p <= 0.000 0.781 0.610 0.568 1.322 

Language p <= 0.000 0.693 0.481 0.457 1.483 

Memory p <= 0.000 0.866 0.750 0.722 1.061 

Mood p <= 0.000 0.793 0.629 0.591 1.286 

Pain p <= 0.000 0.832 0.692 0.656 1.180 
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Predicted Networks Using Z-Scores 
 

 

Fig. 6 – Example of Neural Network Injury Index controls on the left and the Network Injury Index 

discriminant function on the top.  Bottom left are the surface QEEG measures used in the 

discriminant function and bottom right are the LORETA neural network discriminant Z score 

predictions. 
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Post Injury Changes over Time 

 
Fig. 7 – Example of changes in Network Z scores after injury in successive EEG recordings. 

 


