# NEUROGUIDE SIGNAL GENERATOR MANUAL AND TUTORIAL

Copyright © 2003-2006 Applied Neuroscience, Inc. (Sine Wave segments were selected for illustrative purposes only)

# **Introduction:**

The signal generator is used to calibrate and test the digital signal processing properties of NeuroGuide as well as to serve as an educational program by which the principles of digital signal analyses can be learned and explored. Concepts such as frequency, time, phase delays, noise, amplitude and coherence can be tested and evaluated.

EEG data can be simulated by approximating the selected mixtures of signals to match the signal parameters and scalp locations of the EEG.

# **TABLE OF CONTENTS**

- Step #1 Launch NeuroGuide and click File>Open>Signal Generation
- Step #2 <u>Use Mouse to Select EEG Channels</u>, Sine Wave Frequencies and Amplitudes (uV) and Phase Delays (degrees) and "Noise" (% S/N ratio)
- Step #3 Simulate EEG 'Spindles' using the Pulse generate option
- Step # 4- Click OK, then Click Edit>Select All to view FFT results
- Step # 5 <u>Click File>Save As</u> to save the signals in NeuroGuide or Lexicor format (\*.ng or \*.dat).
- Step #6 <u>Example Tutorial</u> of Replicating Peer Reviewed Publication: Gomez and Thatcher "Frequency domain equivalence between potentials and currents using LORETA." <u>Int. J. of Neuroscience</u>, 107: 161-171, 2001.
- <u>Appendix A</u> LORETA
- **<u>Appendix B</u>** Mathematics of Gomez and Thatcher, 2001
- <u>Appendix C</u> References

# **Step #1: Launch NeuroGuide and click File>Open>Signal Generation**

**Return to Top** 

| Notar of Palitie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | (6).        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|
| the Edk Inter Blan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lage Beport Analysis Statistic | a Wedee Seb |
| Qperi •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NeuroGuide Obten               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HESA +                         |             |
| Lago ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bolens                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brantfaller *                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Davel.                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Çedicen 🕐                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Devned                         |             |
| Est .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Leskie ·                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ignizer                        |             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Among Among and                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Americana.                     |             |
| NEW AND AND A STREET AND A ST | ignorificat                    |             |
| 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subips                         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | boCorp Export File             |             |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GP                             |             |
| ra calle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section.                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sector Sector                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contractor and the second      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source product                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |             |
| about the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |             |
| Trooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |             |

Step #2 - Use Mouse to Select EEG Channels, Waveforms (sine, sawthooth, square and pulses), Frequencies (1 to 30 Hz), Amplitudes (uV), Phase Delays (degrees) and "Noise" (% S/N ratio)



2a - Click a channel to select a location in Lexicor format (e.g., O1), then double click a Frequency (e.g., 10 Hz), then double click Amplitude (uV) and type in a value (e.g., 100 uV).

| ignal            | Signal Pa | rameters by Frequen | cy.               | Signal Waveform           |
|------------------|-----------|---------------------|-------------------|---------------------------|
| FP1<br>FP2       |           | Amplitude (uV)      | Phase Shift (Deg) |                           |
| F3               | 0 Hz      | 0.00                | 0.00              |                           |
| F4               | 1 Hz      | 0.00                | 0.00              |                           |
| ČĂ               | 2 Hz      | 0.00                | 0.00              |                           |
| P3<br>P4         | 3 Hz      | 0.00                | 0.00              |                           |
| DÎ               | 4 Hz      | 0.00                | 0.00              |                           |
| 02<br>57         | 5Hz       | 0.00                | 0.00              | 1114114111411141114       |
| 8                | 6 Hz      | 0.00                | 0.00              |                           |
| 13               | 7 Hz      | 0.00                | 0.00              | 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 15               | 8 Hz      | 0.00                | 0.00              |                           |
| 16               | 9 Hz      | 0.00                | 0.00              | ********                  |
| -2<br>Cz         | 10 Hz     | 100.00              | 0.00              | 11                        |
| Pz               | 11 Hz     | 0.00                | 0.00              |                           |
|                  | 12Hz      | 0.00                | 0.00              |                           |
| ignal Noise (uV) | 13 Hz     | 0.00                | 0.00              | QK Cancel                 |
| 0.00             | 14 Hz     | 0.00                | 0.00              |                           |
| 90.00            | 15 Hz     | 0.00                | 0.00              |                           |

2b – Mix sine waves in by double clicking the amplitude of a different frequency, e.g., 5 Hz and type 50 uV.

| iignal          | Signal Pa | rameters by Frequen | 2                 | Signal Waveform                       |
|-----------------|-----------|---------------------|-------------------|---------------------------------------|
| FP1<br>FP2      |           | Amplitude (uV)      | Phase Shift (Deg) |                                       |
| F3              | 0 Hz      | 0.00                | 0.00              |                                       |
| -4              | 1 Hz      | 0.00                | 0.00              | 1.1.1.1.1.1.                          |
| 24              | 2 Hz      | 0.00                | 0.00              |                                       |
| 3               | 3 Hz      | 0.00                | 0.00              | 11111111111111111111                  |
| n I             | 4 Hz      | 0.00                | 0.00              |                                       |
| 12              | 5 Hz      | 50.00               | 0.00              |                                       |
| 8               | 6 Hz      | 0.00                | 0.00              | V (                                   |
| 3               | 7 Hz      | 0.00                | 0.00              |                                       |
| 5               | 8 Hz      | 0.00                | 0.00              |                                       |
| 6               | 9 Hz      | 0.00                | 0.00              | V V V                                 |
| 2               | 10 Hz     | 100.00              | 0.00              |                                       |
| 2               | 11 Hz     | 0.00                | 0.00              |                                       |
|                 | 12 Hz     | 0.00                | 0.00              | · · · · · · · · · · · · · · · · · · · |
| gnal Noise (uV) | 13 Hz     | 0.00                | 0.00              | QK Cancel                             |
| 0.00            | 14 Hz     | 0.00                | 0.00              |                                       |
| 0.00            | 15 Hz     | 0.00                | 0.00              |                                       |

2c – Shift the Phase of the 5 Hz signal by double clicking "Phase Shift (Deg)" at 5 Hz and type 30.

| ignal            | Signal Pa | rameters by Frequen | cy.               | Signal Waveform     |
|------------------|-----------|---------------------|-------------------|---------------------|
| FP1<br>FP2       |           | Amplitude (uV)      | Phase Shift (Deg) |                     |
| 3                | 0 Hz      | 0.00                | 0.00              | A A A A A           |
| 4                | 1 Hz      | 0.00                | 0.00              | B A B A B A B A B A |
| <b>Ä</b>         | 2 Hz      | 0.00                | 0.00              |                     |
| 3                | 3 Hz      | 0.00                | 0.00              |                     |
| ที่ 1            | 4 Hz      | 0.00                | 0.00              |                     |
| 02<br>7          | 5Hz       | 50.00               | 30.00             |                     |
| 8                | 6 Hz      | 0.00                | 0.00              |                     |
| 13               | 7 Hz      | 0.00                | 0.00              |                     |
| 5                | 8 Hz      | 0.00                | 0.00              |                     |
| 6                | 9 Hz      | 0.00                | 0.00              | V V V V             |
| 2                | 10 Hz     | 100.00              | 8.00              |                     |
| Pz .             | 11 Hz     | 0.00                | 0.00              |                     |
|                  | 12Hz      | 0.00                | 0.00              |                     |
| ignal Noise (uV) | 13 Hz     | 0.00                | 0.00              | QK Cancel           |
| 0.00             | 14 Hz     | 0.00                | 0.00              |                     |
| Jacob.           | 15 Hz     | 0.00                | 0.00              |                     |

2d – Add "Noise" to the 5 Hz signal by double clicking the window below "Signal Noise (uV)" and type 100. This adds 100 microvolts of noise to the 5 Hz signal located at O1.

| ignal            | Signal Parameters by Frequency |                |                   | Signal Waveform                         |
|------------------|--------------------------------|----------------|-------------------|-----------------------------------------|
| FP1<br>FP2       |                                | Amplitude (uV) | Phase Shift (Deg) | I I                                     |
| F3               | 0 Hz                           | 0.00           | 0.00              |                                         |
| F4               | 1 Hz                           | 0.00           | 0.00              |                                         |
| C4               | 2Hz                            | 0.00           | 0.00              | - 附前 方面 方面 防病                           |
| P3<br>P4         | 3 Hz                           | 0.00           | 0.00              | THE ALCONDATION TO DEPART               |
| 01               | 4 Hz                           | 0.00           | 0.00              | - <del>/ 1</del> x// +                  |
| 02<br>57         | 5 Hz                           | 50.00          | 30.00             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| F8               | 6 Hz                           | 0.00           | 0.00              |                                         |
| 13               | 7 Hz                           | 0.00           | 0.00              |                                         |
| 15               | 8 Hz                           | 0.00           | 0.00              | 1 1 N 1                                 |
| TE               | 9 Hz                           | 0.00           | 0.00              |                                         |
| rz<br>Cz         | 10 Hz                          | 100.00         | 0.00              | 172                                     |
| Pz               | 11 Hz                          | 0.00           | 0.00              |                                         |
|                  | 12Hz                           | 0.00           | 0.00              | 0                                       |
| ignal Noise (uV) | 13 Hz                          | 0.00           | 0.00              | QK Cancel                               |
| -                | 14 Hz                          | 0.00           | 0.00              |                                         |
| (Jacobia         | 15 Hz                          | 0.00           | 0.00              |                                         |

2e - Repeat Steps 2a to 2d for each channel with or without adding phase delays and/or noise or multiple frequencies, etc. Unselect any value by double clicking in the appropriate box and set the value = 0. The Channel is the primary selection and then the amplitude, frequency or mixtures of frequencies and phases and noise are the secondary selections.

# Step #3 - Simulate EEG "Spindles" by selecting pulse and then select the frequency and amplitude of the intra-pulse structure, duration and inter-pulse intervals of the simulated spindles.

**3a - Generate Pulses of different durations and inter-pulse intervals.** Use this tool to simulate EEG "Spindles".





3b - Simulate any EEG by comparing the auto and cross-spectral values and then entering these values into the appropriate channels and appropriate parameter selection locations. Use the Signal Generator feature of NeuroGuide to learn about digital signal processing in general as well as various analytical programs including LORETA and other inverse solutions.

# **Step # 4- Click OK, then Click Edit>Select All to view FFT results**



# Step #5 - Click File>Save As to save the signals in NeuroGuide or Lexicor format (\*.ng or \*.dat).

#### **Return to Top**

Step – 5a - Follow the NeuroGuide Manual Instructions (step #6) to save as NeuroGuide (\*.ng) or Lexicor (\*.dat) files.

Step – 5b - Follow the NeuroGuide Manual Instructions (step # 6) to save Power Spectra and Cross-Spectra (Step # 6) and to Export to LORETA (Step # 11 in the NeuroGuide Manual).

## Step #6 - Example Tutorial by replicating the publication: Gomez and Thatcher "Frequency domain equivalence between potentials and currents using LORETA." <u>Int. J. of</u> <u>Neuroscience</u>, 107: 161-171, 2001.

| Signal            | Signal Pa | rameters by Frequen | 2                 | Signal Waveform |
|-------------------|-----------|---------------------|-------------------|-----------------|
| FP1<br>FP2        |           | Amplitude (uV)      | Phase Shift (Deg) |                 |
| F3<br>F4          | 7 Hz      | 0.00                | 0.00              |                 |
| ci                | 8 Hz      | 0.00                | 0.00              |                 |
| C4                | 9 Hz      | 0.00                | 0.00              |                 |
| P4                | 10 Hz     | 50.00               | 0.00              |                 |
| 01                | 11 Hz     | 0.00                | 0.00              |                 |
| F7                | 12 Hz     | 0.00                | 0.00              |                 |
| F8                | 13 Hz     | 0.00                | 0.00              |                 |
| T4                | 14 Hz     | 0.00                | 0.00              |                 |
| 15                | 15 Hz     | 0.00                | 0.00              |                 |
| 16<br>F2          | 16 Hz     | 0.00                | 0.00              |                 |
| Cz                | 17 Hz     | 0.00                | 0.00              |                 |
| P2                | 18 Hz     | 0.00                | 0.00              |                 |
|                   | 19 Hz     | 0.00                | 0.00              | 1               |
| Signal Noise (uV) | 20 Hz     | 25.00               | 0.00              | QK Cancel       |
| 0.00              | 21 Hz     | 0.00                | 0.00              |                 |
| Sec.              | 22 Hz     | 0.00                | 0.00              |                 |

#### 5a- Select O1 at 10 Hz at 50 uV and 20 Hz at 25 uV

#### $5b-Select\ O2$ at 8 Hz 50 uV and 16 Hz at 25 uV



#### $5c-Select\ F7$ at 10 Hz 25 uV and 20 Hz at 50 uV

| Signal            | Signal Pa | rameters by Frequen | cy.               | Signal Waveform                          |
|-------------------|-----------|---------------------|-------------------|------------------------------------------|
| FP1<br>FP2        |           | Amplitude (uV)      | Phase Shift (Deg) | LAND LAND                                |
| F3<br>F4          | 7 Hz      | 0.00                | 0.00              |                                          |
|                   | 8 Hz      | 0.00                | 0.00              | 1.1.1.1. D. M. (. 1. 1. 1. 1. 1.         |
| C4                | 9 Hz      | 0.00                | 0.00              | 一封作任意的准认作只是当作到多的准法推出。                    |
| P4                | 10 Hz     | 25.00               | 0.00              | - 114 114 114 114 114 114 114 114 114 11 |
| 01                | 11 Hz     | 0.00                | 0.00              |                                          |
| 6/2<br>F7         | 12 Hz     | 0.00                | 0.00              |                                          |
| F8                | 13 Hz     | 0.00                | 0.00              |                                          |
| T4                | 14 Hz     | 0.00                | 0.00              |                                          |
| T5                | 15 Hz     | 0.00                | 0.00              |                                          |
| 16<br>F2          | 16 Hz     | 0.00                | 0.00              |                                          |
| Cz                | 17 Hz     | 0.00                | 0.00              |                                          |
| P2                | 18 Hz     | 0.00                | 0.00              |                                          |
|                   | 19 Hz     | 0.00                | 0.00              | 1                                        |
| Signal Noise (uV) | 20 Hz     | 50.00               | 0.00              | QK Çancel                                |
| 0.00              | 21 Hz     | 0.00                | 0.00              |                                          |
| 850               | 22 Hz     | 0.00                | 0.00              |                                          |

#### 5d – Select F8 at 8 Hz 25 uV and 16 Hz at 16 uV

| Signal            | Signal Parameters by Frequency |                |                   | Signal Waveform                          |
|-------------------|--------------------------------|----------------|-------------------|------------------------------------------|
| FP1<br>FP2        |                                | Amplitude (uV) | Phase Shift (Deg) |                                          |
| F3<br>F4          | 7 Hz                           | 0.00           | 0.00              |                                          |
| iii ii            | 8 Hz                           | 25.00          | 0.00              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| C4<br>P3          | 9 Hz                           | 0.00           | 0.00              | - 118 118 138 118 118 118 118 118        |
| P4                | 10 Hz                          | 0.00           | 0.00              | - 作我们我们我们我们我们我们我们                        |
| 01                | 11 Hz                          | 0.00           | 0.00              |                                          |
| F7                | 12 Hz                          | 0.00           | 0.00              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
| F8                | 13 Hz                          | 0.00           | 0.00              | A [] A [] A [] A [] A [] A [] A [        |
| T4                | 14 Hz                          | 0.00           | 0.00              |                                          |
| 15                | 15 Hz                          | 0.00           | 0.00              |                                          |
| Fz                | 16 Hz                          | 50.00          | 0.00              |                                          |
| Cz                | 17 Hz                          | 0.00           | 0.00              |                                          |
| P2                | 18 Hz                          | 0.00           | 0.00              |                                          |
|                   | 19 Hz                          | 0.00           | 0.00              |                                          |
| Signal Noise (uV) | 20 Hz                          | 0.00           | 0.00              | QK Çancel                                |
| 0.00              | 21 Hz                          | 0.00           | 0.00              |                                          |
|                   | 22 Hz                          | 0.00           | 0.00              |                                          |

5e – Click OK and then click File>Save As NeuroGuide (\*.ng) or Lexicor (\*.dat) for purposes of further analysis. For example, save the power spectra and/or export the digital time series to LORETA.



## APPENDIX – A

#### **Return to Top**

Gomez and Thatcher, 2001 used the Key Institute mathematical equations to validate LORETA and cross-validated their math by comparing the forward solution and the inverse solution using MRI 3-D voxel locations and the surface scalp EEG currents and potentials (Based on the Reciprocity Theorum, Helmholtz, 1853). The results of the Gomez and Thatcher, 2001 study is also consistent with Tesche, C. and Kajola, M. "A comparison of the localization of spontaneous neuromagnetic activity in the frequency and time domains." <u>Electroencephalography and Clin. Neurophysiology</u>, 87(6): 408-416, 1993.

One can test the facts and the science of LORETA for themselves using the NeuroGuide signal generator and the Gomez and Thatcher, 2001 frequencies and locations which is only one of several tools available to test LORETA (see Appendix B and C) not to mention the mathematical concepts of linearity between frequency and time and between electrical potentials and currents (Helmholtz, 1853 physics of "Reciprocity" and the "Lead Field", Malmivuo and Plonsey, 1995).

It makes no difference whether one exports signals in the time domain or in the frequency domain (as demonstrated in the Gomez & Thatcher, 2001 and the Tesche et al, 1993 publications as well as by mathematical simulation in step # 5). Caution must be exercised when using LORETA to be sure to physiologically validate using the surface linked ears, average reference and current source density data. This is not to indicate that LORETA is not a valid mathematical and scientific methodology, to the contrary, it is an important contribution. We are emphasizing the fact that LORETA is valid when used by competent professionals who take the time to validate the source solutions by evaluating the surface EEG distributions and physiology in order to guard against localization error. For example, scalp recorded EEG with large amplitude alpha in O1 and O2 should appear as high current density in areas 17, 18 & 19 in LORETA.

## APPENDIX – B Mathematics and Results of Gomez & Thatcher, 2001

#### **Return to Top**

Note: There are three instances when multiplication of matrices is communitative: 1- by a null matrix, 2by an identity matrix and, 3- multiplication by a scalar. The equation below is a valid equality when using a scalar as we do.

$$\lambda A = \{\lambda a_{ij}\} = \{a_{ij}\lambda\} = A\lambda$$
 Eq. 1

We apply this community property in the following manner. For S = KJ, where K is the lead field matrix, J = current and S = the sensitivity of the sensors (dependingon the model used and the conductivity, etc.). S is an N x W matrix for the scalp potentials (EEG/MEG),where N is the number of sensors and W is the number of time samples. J is a 3M x W matrix, where Mis the number of sources and W is the same time samples as for S. Then the inverse solution is a linearcombination of the signal S in the sensors

$$\mathbf{J} = \mathbf{T} \cdot \mathbf{S} \qquad \qquad \mathbf{Eq. 2}$$

Where T is some generalized inverse of K, where the minimum norm solution is

 K' is the transpose of K, and · represents matrix multiplication and pinv(X) is the Moore-Penrose pseudoinverse (Menke, 1984). Pascual-Marqui et al, 1994 use the mathematical method that they refer to as "Low-Resolution Computed Tomography" (LORETA) to add physiological foundations and to avoid the minimum norms's problems in localizing deep sources by using the Laplacian Operator B and W as a weighting matrix. The LORETA equation is

 $T = \{pinv(WB'BW)\}K'[pinv(K inv(WB'BW)K']$  Eq. 4

The critical factor in these considerations is that the real number FFT computed by the cross-spectrum (Hermitian matrix as a scalar real number) as represented in equation 1 is a linear operator such that for any inverse solution of the form in equation 3 is equivalent to:

$$FFT(J) = FFT [T \cdot S] = T \cdot FFT[S]$$
Eq. 5

Equation 5 is the formula that Gomez and Thatcher (2001) used. Gomez and Thatcher (2001) simulated the linear equivalence by a combination of sine waves and confirmed the linearity of equation 5 as any one can do by using the NeuroGuide signal generator as described in step # 5 for oneself.

Figure 1 – From Gomez & Thatcher, 2001. This is the three-shell spherical model of the head used to simulate LORETA. Four electrodes (F7, F8, O1, O2) and the reference electrode (A1) are indicated by black rectangles. The coordinates of the electrodes are according to the best-fitting sphere relative to cortical anatomy (Towel et al., 1993). The peaks of beta (for F7 and F8) and alpha activity (for O1 and O2) are indicated in parenthesis. Eight sources (1 to 3) indicated by black circles were located in the interior of the sphere to represent the equivalent current sources such as in the gray matter.



Figure 2 – From Gomez & Thatcher, 2001. Power spectrum of the signals used to simulate LORETA. The spectrum of the signals in the scalp electrodes is shown on the left (amplitude of beta is higher in the anterior regions, alpha amplitude is higher in the posterior regions and a frequency shift toward the lower frequencies in the right hemisphere). The center and right columns are the spectra of the current sources nearest to the electrodes J1, J3, J5 and J7 after calculating the inverse solution. Each source has three components x, y and z. The y-axis of the electrodes is  $uv^2$ /cycle/sec for the electrodes and  $uA/cm^2$ ) <sup>2</sup>/cycle/sec for current density at each source location. The x-axis is frequency in Hz in all cases. This simulation confirms the mathematical statements and demonstrates a frequency domain equivalence between the spectra of electrical potentials at the scalp and the spectra of currents in the interior of the head model.



## **APPENDIX – C - REFERENCES**

#### **Return to Top**

Baillet, S., et al, "Evaluation of inverse methods and head models for EEG source localization using a human skull phantom". Physics in Medicine and Biology, 46: 77-96, 2001.

Baillet, S. and Garnero, L. "A Bayesian approach to introducing anatomo-functional priors in the EEG, MEG inverse problem". IEEE Trans. Biomed. Eng. 44: 374-375, 1997.

Casper, et al. "Evaluation of inverse methods and head models for EEG source localization using a

human skull phantom" at: http://sipi.usc.edu/~silvin/docs/inversecasperthese2.pdf

Gomez, J. F. and Thatcher, R.W. "Frequency domain equivalence between potentials and currents using LORETA." Int. J. of Neuroscience, 107: 161-171, 2001.

Helmholtz, HLF, Ann. Physik and Chemie 89: 211-233, 354-377, 1853 (see also "Helmholtz's Treatise on Physiological Optics" by Hermann Von Helmholtz, edited by J. P. Southal, Thoemmes, Press, 2000, ISBN 1855068311).

Malmivuo, J. and Plonsey, R. "Bioelectromagnetism", Oxford University Press, 1995.

Menke, W. "Geophysical Data Analysis: Discrete Inverse Theory." Orlando: Academ, ic Press, 1984.

Hämäläinen, *M.* "Discrete and distributed source estimates",*ISBET Newsletter* Edited by W. Skrandies, Giessen, Germany, No 6 / December 1995.

Pascual-Marqui, R. D. Review of methods for solving the EEG inverse problem. Inter. J. of Bioelectromagnetism, 1:75-86, 1999.

Tesche, C. and Kajola, M. "A comparison of the localization of spontaneous neuromagnetic activity in the frequency and time domains." <u>Electroencephalography and Clin. Neurophysiology</u>, 87(6): 408-416, 1993.

Towel, V. et al., The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. EEG & Clin. Nerurophysiol., 103: 9 – 15, 1993.