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Statistical Parametric Mapping

Karl J. Friston

The Neurosciences Institute, La Jolla, California 92037

I. Introduction

This chapter describes the ideas and techniques
used in statistical parametric mapping. In one sense,
statistics are the ultimate modality. They are dimen-
sionless and allow information from different modal-
ities to be compared or correlated. Statistical paramet-
ric maps (SPMs) are images with pixel values that are,
under a null hypotheses, distributed according to a
known (statistical) probability density function. SPMs
are used to test specific null hypotheses, usually an
equivalence or regional physiology or absence of cor-
relation. SPMs are essentially images of change or
correlational significance. Statistical parametric map-
ping involves a variety of analytical techniques. Those
described here represent an internally consistent se-
ries of data transformations developed at the MRC
Cyclotron Unit (Hammersmith Hospital, London).
Each transformation appeals to a distinct and separate
theory. The endpoint of these data transformations is
the SPM.

Pixel values in the SPM are a statistical quotient,
usually of the variance (differences) of interest and
error variance (reliability) of the measurement. In-
creasing sensitivity means reducing of error variance.
The remodeling and reducticn of error variance is a
constant theme found throughout the data analysis
stream. The efficacy and nature of each data transfor-
mation are defined in terms of the error variance it
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addresses. This is reflected in the descriptions below,
which are structured around the source of error re-
duced and are presented in the order in which the
transformations are performed. The most common
experimental design, of repeated observations in dif-
ferent subjects, is the sensorimotor or cognitive activa-
tion paradigm. Consequently the analysis of activa-
tion studies will form the core of this chapter, namely
the general case of k repeated measurements in n
subjects.

The first half describes how SPMs are constructed.
The second half provides empirical examples that
show how SPMs can be used to assess (i) functional
anatomy and specialization using activation studies,
(i) CNS plasticity with factorial designs, and (iii) func-
tional connectivity using principal component analy-
ses. The first half is a little dense and some readers
may prefer to go straight to the second half and refer
back for technical details.

II. Procedures

A. The Physiological Measurement

Neurophysiology is usually measured in terms of
regional cerebral blood flow (rCBF), typically with a
fast dynamic technique using O radiolabeled water,
administered intravenously or by C®0, inhalation.
Counts per pixel, per unit time, integrated over the
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acquisition period can be used as an index of rCBF or
entered into a more complete analysis to generate
images of actual rCBF using parameter estimation
(Lammertsma et al., 1990). This parameterization re-
moves variability due to technical idiosyncrasies but
preserves rCBF changes of physiological significance.
However, in any one brain the relative differences
between integrated counts and estimated rCBF are so
small, following global normalization, that parameter
estimation is sometimes unnecessary. The justifica-
tion for using integrated counts as a direct index holds
given a strict condition; there is no a priori reason to
expect a treatment effect on global measures. Treat-
ment effects refer to those introduced by experimental
design. It is unusual to find significant global differ-
ences in normal subjects during standard sensorimo-
tor and cognitive activations. In our experience the
only challenges that induce global differences are
pharmacological. If the scope of the experimental
question is limited to normal subjects, under physio-
logical conditions, most investigators are comfortable
using integrated counts per pixel as rCBF equivalents.

B. Stereotactic Differences

The coregister of homologous functional and ana-
tomical loci from different subjects is the aim of stereo-
tactic normalization. The simplifying assumption is
that a correspondence exists between functional and
structural anatomy. This assumption has been vali-
dated by the efficacy of stereotactic normalization in
contributing to the detection of functional changes
(Fox et al., 1988). Stereotactic normalization is a data
transformation that reduces differences in brain posi-
tion, size, and shape by mapping the image data into
a standard stereotactic space. The space most widely
used is defined by the atlas of Talairach and Tournoux
(1988) and was first proposed by Fox et al. (1985). This
space has now become the international standard for
communicating PET results.

There are two sorts of stereotactic variance, posi-
tional and morphological. Morphological differences
have linear (size) and nonlinear (shape) components.
Stereotactic normalization deals with these differ-
ences by reducing a single nonlinear three-dimen-
sional problem to a series of one-dimensional linear
problems.

1. Positional Variance

Positional variance is removed by translation and
reorientation of the volume image with reference to
a standard line, the intercommissural line passing
through the anterior commissure (AC) and posterior
commissure (PC). This is alternatively known as the

AC-PC line. The position of the AC-PC line can be
estimated directly from morphological information in
the primary (PET) image without reference to a medi-
ating structural (e.g., MRI) scan. This estimation uses
the functional contrast at gray—white matter bound-
aries. The feasibility of doing this was first demon-
strated by using four landmarks that could be identi-
fied on coronal PET sections and that bear a constant
relationship to the AC-PC line (Friston et al., 1989).
The transverse level or height (z) of these landmarks
was estimated for each of the coronal (y) levels. Linear
regression was then used to estimate the AC-PC line.
Construct validity was established with reference to
the method described by Fox et al. (1985).

In order to increase reliability of the AC-PC line
estimation the procedure has been automated; 15 co-
ronal sections are sampled proportionally from the
image. Each coronal section is matched, in a least-
squares sense, to a standard template (average of
many coronal sections following stereotactic normal-
ization). This matching is in terms of z. The z displace-
ment between the observed coronal section and the
template defines the height of the AC-PC line. This
procedure is repeated independently for all sections
and the estimated AC-PC levels (2) regressed on the
observed y. This regression is the AC-PC line esti-
mate. Note that there is no explicit reference to the
commissures or related structures. The functional pro-
file over the entire brain volume contributes equally.
In short, in contrast to earlier approaches, there are
no morphometric landmarks because the procedure
is correlative over the entire brain.

2. Brain Size

Brain size is defined by the bounding box in which
itlies, the dimensions of which are simply determined
by integrating the image over two dimensions to gen-
erate one-dimensional images. The lengths of these
one-dimensional images are determined according to
threshold criteria. Height is specified relative to the
AC_DPC line. The image is resliced parallel to the
AC-PC line into 26 transverse sections that corre-
spond to the drawings of the Talairach and Tournoux
atlas (1988). These sections are linearly rescaled in x
and y such that one pixel represents 2 X 2 X 4 mm
in the standard space.

3. Brain Shape

Each transverse section is mapped from Cartesian
space to polar space. Each radius of the image in polar
space is resampled according to the below theory:
Let g(x) be an observed continuous one-dimensional
image (a radius of a polar image) and v(x) denote
the desired image that approximates to a standard




8. Statistical Parametric Mapping 81

template 7(x). The transformation g(x) — y(x) is ef-
fected by resampling g(x) according to distortion of
the space (x) described by ¢(x):

Y(®) = gle®)] = 7(x) + o (x). )

The difference between the observed image and the
desired image is a slowly varying anatomical distor-
tion in (of) space [¢(x)]. The difference between the
desired image and the template reflects a more rapidly
varying difference due to functional changes [o(x)].
All are continuous functions of x. The resampling
function ¢(x) is given by

b(x) = g7 ![r(x) + o ()], )

assuming ¢ '(-) and 7(-) are smooth monotonic func-
tions (see below),

() =g r@] + g7 [o(@)] = g r(@)] + £(x), (3)

where &(x) is a high-frequency residual term. An esti-
mate of ¢(x) [¢'(x)] is obtained by applying the inverse
image function to the template ¢ "![7(x)]. The result is
smoothed to reduce the effect of £(x) on the estimate
¢'(x) [see Eq. (3)]. In practice, it is necessary to work
with image integrals to ensure invertible, strictly in-
creasing monotonic functions. For a fuller discussion,
see Friston et al. (1991a). The key thing to note is that
pixel values are not changed but moved according
to the smooth resampling function. The smoothing
affects the vectorial displacement of pixels [¢(x)], not
the values themselves [g(x)] (see Fig. 1).

This class of normalization has been validated by
comparing linear and nonlinear sampling as de-
scribed. In general cortical registration is significantly
improved, whereas subcortical structures are less so.
The approach is noniterative and noninteractive and
therefore completely reliable.

resampling function

polar space

resampled rCBF

Figure 1 This schematic illustrates the nonlinear resampling of the Hoffman human brain phantom at 0 mm
relative to the AC-PC line. Both observed g(x) and template 7(x) sections are transformed from Cartesian to
polar space and a resampling function ¢(x) derived empirically for each radius (x) (row of the middle polar
sections). The resampling function ¢(x) is applied to the observed g(x) polar section, which is then transformed
back to Cartesian space. Brighter parts of the resampling function mean “resample the observed image from
the left” (move to right) and darker parts mean “resample from the right.”” The derivation of ¢(x) is described
in the text.
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C. Smoothing

1. Image Noise

This source of error variance can be reduced relative
to signal by smoothing, or convolution. This is predi-
cated on the observation that noise variance can be
distributed in high spatial frequencies, whereas the
signal cannot. The signal (differences in rCBF equiva-
lents) must, by definition, have a spatial wavelength
greater than the resolution of the acquisition system
(because the signal must arise in resolvable struc-
tures). The highest spatial frequencies in noise are
constrained only by the (Hanning) filter used in recon-
struction (typically at 0.5 cycles per pixel).

2. Small-Scale Differences in Functional
and Gyral Anatomy

There will always remain a spatial uncertainty
about the position of a focal activation that remains
after perfect stereotactic normalization. Functional
specialization within a particular gyrus cannot be
guaranteed from subject to subjectand furthermore all
subjects have slightly different gyral configurations.
Convolution smooths a set of spatially dislocated acti-
vation foci into a center of common intersection. This
intersection represents the cortical area evidencing a
reliable increase in measured rCBF. Paradoxically the
area of overlap can be smaller than the smoothing
filter used, resulting in “hyperacute” spatial reso-
lution.

Simulations and analytical solutions to maximizing
this sort of signal recovery converge on surprisingly
high degrees of smoothing. For typical resolutions of
8.5 mm (Spinks et al., 1988), a Gaussian filter 20 mm
in diameter is about optimal.

D. Global or Whole Brain Differences

A correction to rCBF estimates is usually required
to account for the confounding effect of global CBF
(gCBF) differences. This is achieved by covarying out
the effect of gCBF using ANCOVA, a post hoc statisti-
cal adjustment with minimal assumptions. ANCOVA
(Wildt and Ahtola, 1976; Friston et al., 1990) is a gener-
ally accepted way of accounting for the effect of a
nuisance variable or covariate (global activity for sub-
ject nunder conditionk = G,)ona dependent variable
(observed rCBF = Cj,) to give an estimate of the sub-
ject independent, condition dependent variable (Ry)
that would have been seen in the absence of covariate
differences. The two linear models we have examined
are defined by

Cin = Re + B(Gy, = E{Gri}) (4)

Ckn = Rk £ Bk(Gkn - E{Gkn})/ (5)

where R, is the adjusted regional index and B, is the
regression slope (of Cy, on Gy,), reflecting the depen-
dency of Cy, on Gy, . E{-} denotes expectation. Equation
(4) contains only one term with a subscriptk, and only
k. This is the underlying regional effect that character-
izes condition k. Because the regression slopes are
parallel over all k conditions, the relative heights of
the regression lines do not change with Gy, . For this
reason, Eq. (4) is called the independent model. The
activation effect from condition j to i(R; — R;) does not
depend on global activity. This can be remembered,
somewhat metaphorically, by assuming that the phys-
iological recruitment of cortical regions to perform a
sensorimotor or cognitive operation does not depend
on gCBF. Equation (5) is a more general case of Eq.
(4) and allows for the regression slopes to change with
condition k(8,). In this instance, the activation effect
is two dimensional with an effect on R, and an effect
on B,. Physiologically this is not easy to interpret.
Because the activation component (R; — R;) depends
on the level of global activity (i.e., convergent or diver-
gent regression lines), this equation is called the depen-
dent model. Note a special case of Eq. (5) (when g =
Rk/ E {Gkn})/

Cor = Ry + Ri(Gye — E{Gkn})/ E{Gkn}
i.e.,
Ry = Co/ (G E{Gyn}), (6)

is assumed in division by the whole brain mean. In
this instance, the condition-specific, subject-indepen-
dent factor (R,) can be obtained by dividing the ob-
served regional value (Cy,) by an estimate of the ob-
served global index (G /E{Gy}). It is relatively
straightforward to choose between Egs. (4) and (5) by
applying both to real data. Empirically it can be shown
that applying the independent model [Eq. (4)] reveals
a large number of pixels for which the null hypothesis
that R; = R; must be rejected. Conversely the depen-
dent model [Eq. (5)] shows that the number of pixels
for which B, are different is less than chance expec-
tation.

The rejection of the dependent model in favor of
the independent model simplifies interpretation in
that the activation effect is completely captured by an
additive affect on R,. See Fig. 2 for the regression
analysis on real data implicit in the ANCOVA.

Marenco et al. (1991) find a substantial decrease in
error variance and consequent increase in sensitivity
with the ANCOVA model compared with division by
global indices using SPECT and the Wisconsin Card
Sort. Tempel et al. (1991) performed a regression anal-
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Figure 2 Right, the plotted regression analysis demonstrates graphically the effect of activa-
tion according to the independent ANCOVA model described in the text; namely, a vertical
displacement in parallel regression lines of rCBF on gCBF. The solid line corresponds to a
rest condition and the dotted line, a motor activation. Left, the distribution of the F ratio of
variance attributable to treatment or condition and that due to error for all pixels in the slice
from which the data in the regression were taken. Only the tail of the distribution is shown.
The vertical line corresponds to p < 0.05. The solid line is the observed distribution and the

dotted line, that expected under the null hypothesis.

ysis for several points during vibrotactile stimulation
and rest and found only one example in which the B,
differed (at p < 0.05). Note that in the limiting case
of k = 1 the ANCOVA adjustment reduces to a simple
linear regression (see the study of schizophrenia
below).

Itis likely that the true relationship between relative
regional and global indices is nonlinear, and therefore
all linear models are invalid in a strict sense. The
ANCOVA model with parallel regression slopes is
probably the best, in that it allows for a linear approxi-
mation, over a small physiological range, to a gener-
ally nonlinear relationship.

E. Systematic Intersubject Differences

These are accounted for by using a completely ran-
domized block design ANCOVA. The concept of a
block effect accounts for the difference between a paired
and an unpaired f test. The paired test is usually more
sensitive because the variance not accounted for by
the treatment is partitioned into true error variance
and an intersubject (or block) variance. This refined
modeling reduces the estimate of error variance and
increases sensitivity. To generalize to k observations
in n subjects, imagine an n X k data matrix with each
subject along a row and conditions over columns.
The means over columns and rows themselves have
avariance. The variance of the means over rows repre-
sents error due to subject differences not under experi-
mental control. This would normally contribute to er-
ror variance. It is this source of variance which is
modeled and consequently removed by the block de-
sign. The variance in the k means over columns re-
flects diferences between the k conditions and has
been introduced experimentally (treatment effect).

Typically the block effect is about twice the treatment
effect.

By convention the grand mean (E{G,;}) is set to 50
(Mintun et al., 1989; Fox et al., 1989), such that rCBF
means can be interpreted as estimates adjusted to a
mean of 50 ml/min/dl. Note that these estimates are
actually expressed in arbitrary units, which is particu-
larly relevant if the original data were integrated
counts per pixel. Unless rCBF is estimated formally
using parameter estimation, they are referred to as
rCBF equivalents.

F. Constructing the SPM

The adjusted rCBFs are subject to the appropriate
statistical test and the results assembled pixel by pixel
into the SPM. The nature of the SPM is as diverse as
any statistic one can imagine, from a simple ¢ test to
the factor loading following a principal component
analysis (see below). In what follows we concentrate
on the general case of k conditions in n subjects.

The significance of a particular profile of changes
in the (k adjusted condition mean) rCBFs is tested
with a weighted sum of the mean rCBFs at each pixel.
The weights used are called a contrast and are chosen
to reflect the changes that one is interested in. For
example in an A B C C B A design, an activation in
conditions A, with respect to conditions C, would be
tested with the contrast 10 —1 —1 0 1. If the observed
rCBF means are highly correlated with the contrast,
then the sum will be large. The weighted sum is di-
vided by (a function of) the adjusted error variance,
estimated at each pixel. The resulting quotient has the
t distribution under the null hypothesis that there
is no correlation between the time-dependent rCBF
changes and the contrast specified. It is important
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to note that the error variance used in constructing
statistical parameteric maps is estimated for each brain
region separately. This properly acknowledges that
the underlying variablity in rCBF is not the same in
different parts of the brain or under different experi-
mental conditions. The use of contrasts preserves
maximal flexibility by allowing pairwise, nonpairwise,
orthogonal, nonorthogonal, and interaction compari-
sons. This flexibility takes comparison of condition
means, and consequently experimental design, be-
yond a (cognitive) subtractive framework and into a
more Boolean sphere. For example, conditions that
are proposed to include a given cognitive component
can be compared with all conditions that do not. This
can be done even if no two brain states differ in, and
only in, that component. Strictly speaking, a Boolean
approach (e.g., what is in set A and is not in set B of
conditions) should not become central, given that the
contrast represents a linear sum of continuous vari-
ables.

This stage of analysis computes a { value for every
pixel. Pixels at which the adjusted rCBF (equivalents)
(mean over subjects and conditions) do not exceed
36 ml/min/dl are not analyzed further. Within the
remaining (gray matter) brain regions a continuous
smooth three-dimensional  image is created (SPM{t}).
The object of further analysis is the interpretation of
this direct test of the experimental hypothesis.

G. Assessing Significance

There are three approaches to interpreting the sig-
nificance of SPMs (see Friston et al., 1991b). Each is
characterized by its own sort of null hypothesis (for
computational and theoretical simplicity, the SPM{t}is
actually transformed to the unit Gaussian distribution
using a probability integral transform; this means
changes are usually reported as Z scores).

1. Topographically Constrained Null Hypothesis

This is the simplest and states that there has been
no change in rCBF at a single and specified brain
location. This class of null hypothesis imposes a very
selective interrogation of the data at, and only at, one
brain region. Because of the smoothness inherent in
the SPM{t} it is seldom necessary to specify the exact
pixel a priori. This null hypothesis is rejected if the
SPM{f} at the specified location exceeds, say, p < 0.05.

2. A Single Null Hypothesis Relating to the Profile
of Activation

A profile of activation is defined as the excursion
set of pixels above a threshold. There are as many
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activation profiles as thresholds. For any arbitrary
threshold, the null hypothesis states that this profile
could have occurred by chance. The chance expecta-
tion of any profile can be assessed with the probability
of getting the observed number of pixels (x) in the
excursion set, or more, by chance. To estimate this
probability one needs to know the distribution of x
under the null hypothesis. This approach to testing
the overall significance of activation profiles was first
proposed in Friston et al. (1990) using a Poisson ap-
proximation for the probability distribution of x. This
form of omnibus testing has no localizing power but
represents a nonarbitrary test for outliers. It is nonar-
bitrary because the pixels subtending the “improbabil-
ity”” of chance occurrence are explicitly identified by
the threshold chosen.

While the Poisson approximation is asymptotically
correct in the limit of no smoothness, it is probably
not appropriate for SPMs with substantial smooth-
ness. The problem here is that although the expecta-
tion of x is known exactly (it is determined by the
known univariate distribution of the statistic in ques-
tion, the threshold, and the total number of pixels
analyzed) the variance of x depends on smoothing.
Although smoothness increases the probability of get-
ting a large number of pixels in the excursion set by
chance it decreases the chance probability of getting a
large number of contiguous sets of pixels (regions).
This is used to advantage in the third approach to
assessing significance, which introduces a correction
for the number of pixels analyzed.

If no correction for multiple comparisons is made
(see below) then the threshold is usually set at some
reasonably high level (e.g., p < 0.001). A level of
p < 0.001 has been shown to protect from false posi
tives using phantom activation simulations (Bailey e:
al., 1991). In some comparisons (for example where
the block effect cannot be removed in comparing twe
different cohorts) a very low threshold is used (e.g-
p < 0.05). At this level, given about 3 - 10* pixels ar
analyzed, the expectation under the null hypothesi
is 1500 (a sphere of about 7 pixels radius).

3. Multiple Null Hypotheses for Each Pixel

The final approach to interpretation treats the
SPM{f} as many nonindependent univariate tests
There are as many null hypotheses as there are pixels
If the null hypothesis of no change is rejected for
specific location, then an independent activation cai
be localized to this site irrespective of changes else
where. This requires a threshold correction for mult
ple comparisons or the large number of null hypothe
ses being tested concurrently. This correction is nc
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simple because the tests are not independent. Nonin-
dependence is a consequence of smoothness.

For any given threshold the size of the excursion
set will not depend on smoothness, but its spatial
distribution will. A highly uncorrelated (rough) pro-
cess will produce a large number of scattered regions
subtending the excursion set. A very smooth process
on the other hand is likely to have its entire excursion
setinasingle contiguous region. Although the univar-
fate probability distribution of pixel values in the pro-
cess is not a function of smoothness, the multivariate
probability distribution of severa] neighboring pixels
is. Account is taken of smoothing by defining the
event of interest as the center of a contiguous subset
of the excursion set (region). The probability (@) of
this event (per pixel) is uniform over the image process
and is a function of threshold (u) and smoothness (s):

@= @275 exp(u?) - p), )

where p is equivalent probability in the absence of
smoothing. s and FWHM are simply related:

FWHM = 2.3548 - s, )

An appropriate correction for multiple nonindepen-
dent univariate comparisons requires o = 0.05/N,
where N is the total number of pixels analyzed and
a - N is the expected number of regions. The above
approximation is used to determine the threshold.
This determination requires an estimate of s, obtained
from the variance of the SPM field derivatives. These
results were developed using the theory of stochastic
processes (Cox and Miller, 1987) [see Friston et a4l
(1991b) for a full exposition].

Recent work by Worsley et al. (1992) has used the
Euler characteristic of the excursion set as an estimate
of the number of contiguous suprathreshold regions.,
This related approach gives almost identical results
(in two dimensions).

Any or all of the three different hypotheses de-
scribed above could be applied to the same data. The
distinction between exploratory and confirmatory
studies is often reiterated. This distinction is repeat-
edly acknowledged by my colleagues with a benevo-
lent, if weary, air. Clearly, imaging studies can be
treated as both exploratory and confirmatory depend-
ing on the nature of the hypothesis being tested.

SPMs are usually displayed in their entirety by
viewing the brain space from orthogonal directions
and displaying the highest valued pixel along any
line of view (maximum Intensity projection). These
orthogonal projections can be thought of as statistical
X rays highlighting statistically dense (significant) re-

S

gions. The data can be rendered onto drawings of the
cortical surfaces to aid interpretation.

II. Applications

A. Functional Anatomy

1. An Activation Study

Consider this example from a six-subject study with
three tasks presented twice (Frith ef g/ -, 1991) (n = 6,
k = 6). The tasks were presented in balanced order
to avoid monotonic time effects (this is standard prac-
tice in some units) —A BCCB A, where A is a word
shadowing task, B is a semantic opposites task, and
Cis a paced verbal fluency task. All tasks were paced
at one word per 2 s. Words in tasks A and B were
high—frequency, concrete words. The design of this
paradigm was predicated on cognitive subtraction
(Petersen et al., 1989). The differences between A and
Bincluded semantic analysis, categorization, and re-
trieval. The key difference between A and C was the
intentional aspect of word retrieval (intentional here
means not specified by an extrinsic cue). This inten-
sional component has been a major focus of our work
using verbal fluency and memory challenges and re-
flects our interests in schizophrenia.

Figure 3 shows the comparison of tasks C and A
(verbal fluency and word shadowing). The one-tailed
SPM{t} were thresholded at p = 0.001 (no correction
for multiple comparisons). The activation profile can
be described as an extensive region in the left dorsolat-
eral prefrontal cortex (DLPFC), including Broca’s area
(Brodmann’s area, BA 44), and the anterior cingulate
(bilaterally). There is a small region in the cerebellum
that may or may not be significant. The decreases can
be characterized as extensive bitemporal deactivations
with a contribution from the posterior cingulate (bilat-
eral). These are cursory but complete descriptions of
the profiles. No one component of this profile is con-
sidered significant in its own right because a correc-
tion for multiple comparison was not made.

These results highlight a number of observations
common to many cognitive activation profiles. First,
if the cognitive differences between two tasks include
an intentional component, the DLPFC is likely to be
involved. Intentional tasks subsume (by definition)
mnemonic tasks. Second, deactivations (rCBF de-
Creases) characterize brain states with the same re-
gional specificity and spatial extent typical of activa-
tions. Indeed one could look at the bitemporal
deactivations as rCBF increases associated with extrin-
sically cued word generation (i.e., word shadowing
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coranal

left temporal deactivations

l Figure 3 SPM{t} comparing two verbal fluency conditions with baseline (word shadowing
conditions). The SPM has been thresholded at p = 0.001 with no correction for multiple
' comparisons. Because one-tailed levels were used, the increases (activations) and decreases
] (deactivations) are displayed separately. Each SPM{t} is displayed as a volume image from
the back (top right), the side (top left), and top (bottom left) of the brain. The highest ¢
value along any line of view is displayed. The standard stereotactic space is captured by
the grid upon which the SPM{t} is superimposed (Talairach and Tournoux, 1988). The
activation profile is described in the text but in summary shows a left DLPFC and bilateral
anterior cingulate activation and bitemporal and posterior cingulate deactivations. The
same excursion set of pixels has been divided into four sagittal blocks and the left lateral

with verbal fluency as a control). Finally reciprocal
H changes in rCBF at remote sites is a common finding.
Especially evident here are negatively correlated fron-
totemporal changes and a similar relationship be-
tween the anterior and the posterior parts of cingulate
cortex. Both these correlations are seen in replication
studies and other related (memory) paradigms.

2. Single Subjects and Single Conditions

The above is typical of the general n X k study.
The SPM approach can be applied to many conditions
in a single subject or indeed many subjects in the
-same state.

Figure 4 shows the rCBF increases attributed to
morphine analgesia (see Jones et al., 1991a). A 66-
year-old man had had a well-differentiated squamous
cell carcinoma of the left jaw, which was resected and

block, rendered onto a drawing of the cortical surface.

irradiated. Four days after completion of radiother-
apy, he could tolerate left-sided jaw pain without dia-
morphine analgesia. The subject was scanned nine
times every 15 min. After three scans he received an
intravenous morphine infusion at 10 mg/h. The first
three scans (in pain) were compared with the last
five (subjectively rated pain free). The corresponding
SPM{t} thresholded at p < 0.001 (no correction for
multiple comparisons) is seen in Fig. 4 and highlights
substantial increases in the right DLPFC (contralateral
to the site of pain) and anterior cingulate. The later
finding is particularly interesting given the finding of
anterior cingulate responses to pain in normal subjects
(Jones et al., 1991b; Talbot et al., 1991).

Figure 5 shows left parahippocampal correlates of
symptomatic severity in 30 chronic schizophrenics.
Thirty DSMIII-R (American Psychiatric Association,
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Figure 4 SPM{t} showing the significant increases (p < 0.001) in rCBF in a single
subject repeatedly scanned during the induction of morphine analgesia.

1986) chronic schizophrenic patients all under the age
of 55 were scanned under the same (rest) conditions.
The selection criteria placed on emphasis on persistent
and stable symptoms. Symptom ratings were made
using CASH (Andreasen, 1987) and then subjected to
factor analysis. This analysis revealed a three-dimen-
sional structure to the behavioral data: psychomotor
poverty, characterized by poverty of speech, move-
ment, and feeling; a disorganization syndrome col-
ored by inappropriate affect and incoherent speech
with little informational content; and finally a dimen-
sion of positive experiential symptoms including delu-
sions and hallucinations. The sum of these three factor
scores provided an estimate of symptom severity that

correlation SPM

Figure-5 SPM{p} demonstrating marked positive correlations
(p < 0.05) between symptom severity and adjusted rCBF in the
left temporal region, mesencephalon, and basal ganglia (max-
imum correlation in the left parahippocampal gyrus-circled) in
30 DSMIII-R chronic schizophrenics.

received equal contributions from all (three) subsyn-
dromes. This sum was correlated with adjusted rCBF
atall pixels to generate a SPM{p}. Positive correlations
thresholded at p < 0.05 (no correction for multiple
comparisons) are displayed in Fig. 4. This statistic is
equivalent to the partial correlation between overall
symptom severity and rCBF, having accounted for the
effect of global differences. The equivalent SPM{p}
(not shown) for each of the separate subsyndromes
revealed hypofrontality (Ingvar, 1974; DeLisi, 1985a,
1985b) for, and only for, the psychomotor poverty
subsyndrome (see Liddle et al., 1991; Friston et al.,
1992a).

Using the same analytical techniques and in partic-
ular the same standard stereotactic space allows the
direct comparison of results on the functional anat-
omy of normal subjects and the physiological corre-
lates of behavioral and cognitive deficits exhibited by
patients. The relationship between stimulation experi-
ments and disease or lesion studies has a long history
in neuroscience. A landmark meeting, which took
place on August 4th, 1881, to discuss localization of
function in the cortex cerebri, addressed this issue.
Goltz (1881), although accepting the results of electri-
cal stimulation of the dog and monkey cortex (e.g.,
Ferrier, 1875), considered the excitation method in-
conclusive, in that movements elicited might have
originated in related pathways or current could have
spread to distant centers. “Ablation experimerits were
therefore essential to complement the results obtained
by excitation” (Phillips ef al., 1984).

B. The Factorial Design—Cerebellar Plasticity

A natural extension of the SPM approach is the
combination of two or more treatments in the same
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activation study. The appeal of this ( factorial) design is
that both the main effects and the interaction between
treatments are measurable. An interaction is simply
a difference in differences, in other words, the modu-
lation of activation attributable to one treatment by a
second. The first PET experiment in this class was
perhaps the simplest imaginable and will serve as a
concrete illustration of the idea.

Consider the synaptic changes that underlie motor
learning. The cerebellum has long been thought to be
implicated in motor learning (Marr, 1968; Albus, 1971;
Ito et al., 1974). Gilbert and Thach (1977) have demon-
strated a reduction in the simple and complex spike
activity of Purkinje cells in the cerebellum during mo-
tor learning in nonhuman primates. At a synaptic
level, long-term depression (LTD) at synapses on api-
cal dendrites of Purkinje cells, at the site of contact
with parallel fibers, in neocerebellar cortex may be a
key mechanism. Ito and colleagues (1989) have dem-
onstrated LTD in synaptic efficacy following conjoint
stimulation of parallel fibers and climbing fibers. If
LTD in the neocerebellar cortex is associated with re-
peated practice of a novel motor task, it should be
possible to image the neurophysiological correlates of
these changes. It might be expected that physiological
adaptation of the response to motor performance
would be seen in the neocerebellum and the target
area of Purkinje cell afferents (cerebellar nuclei) one
synapse downstream. To test this hypothesis, sub-
jects repeated rest-finger opposition task pairs three
times. To ensure performance changes did not con-

found interpretation, finger opposition was entrained
with a metronome. The two treatments in this exam-
ple were motor activation and time. Motor activation
had two levels (rest and practice) and time had three
(first, second, and third trial pairs). The interaction
term corresponds to physiological adaptation of the
motor activation, namely an attenuation of the motor
activation effect on rCBF over time (a difference in
the differences). The results of this study (Friston et
al., 1992b, 1991¢c) were consistent with LTD in the
cerebellum. Figure 6 shows two SPM{t}. The first rep-
resents the main effect of motor performance and is
a typical motor activation profile (Deiber et al., 1990).
The second SPM{#} is the interaction term. This profile
is strongest in the cerebellar cortex (ipsilateral to hand
moved) and cerebellar nuclei. Additional components
include the brain stem at the level of the inferior colli-
culi and a small portion of SMA (no data were ob-
tained above this level). The contrasts (or weights)
used to create the SPM{t} were:

Condition
(R, rest; A, practice)

R A R A R A

Main effect of motor activation -1 1 -1 1 -1 1
Interaction -1 1 0 0 1 =4

There were no main effects of time at the threshold
used (p < 0.001).
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Figure 6 SPM{t}s depicting the main effect of motor activation and the interaction effect

between motor activation and time (trial numb

er). The one-tailed SPM{t}s are thresholded at

p = 0.001 with no correction for multiple comparisons. The left SPM{t} shows increases and
highlights the motor system from sensorimotor cortex to ipsilateral cerebellum. The interaction
SPM{t} reflects adaptation of the activation effect. The components subtending this profile
include the ipsilateral neocerebellum, the cerebellar midline at the level of the cerebellar
nuclei, the brain stem, and a small portion of SMA at the edge of the field of view of the

camera.
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One clear application of the factorial design is to
cross psychological and pharmacological treatments
in a combined psychopharmacological paradigm. In-
deed the study of neuromodulatory neurotransmitter
systems requires a second treatment to elicit a physio-
logical response that can be modulated (neuromodu-
lation is here defined as an induced change in physio-
logical response to an independent afferent input).
This approach has been used with particular success
by crossing subsupraspan memory tasks with the
5HT, 4 partial agonist buspirone and the mixed dopa-
mine agonist apomorphine (see Friston et al., 1992c;
Grasby et al., 1992).

C. Functional and Effective Connectivity

In the past two decades the concept of functional
or effective connectivity has been most thoroughly elab-
orated in the analysis of multiunit recordings of sepa-
rable neuronal spike trains, recorded simultaneously
from different brain areas (Gerstein and Perkel, 1969;
Gerstein ef al., 1989). Temporal coherence among the
activity of different neurones is commonly measured
by cross-correlating their spike trains. The resulting
correlograms are then interpreted as the signature of
effective connectivity. In current approaches, effective
connectivity is assessed as the joint probability of two
neurones firing together as a function of time in an
interstimulus interval (Aertsen and Preissl, 1991).
There is a close relationship between the notion of
effective connectivity and synaptic efficacy; ““Itis useful
to describe the effective connectivity with a connectiv-
ity matrix of effective synaptic weights. Matrix ele-
ments would represent the effective influence by neu-
rone i on neurone j” (Gerstein et al., 1989). This
definition is an essential and useful abstraction but
lacks operational significance. In what follows, we
reserve the term functional connectivity to mean the
observed temporal correlation between two electro/neuro-
physiological measurements from different parts of the brain.
Effective connectivity will refer to the underlying effi-
cacy, which may or may not be measurable.

An exposition of functional connectivity based on
PET physiological data can be reduced to an examina-
tion of its correlation structure. Correlation structure
refers to the correlations observed over a time series
in the same subject(s) (e.g., Friston et al., 1991d; La-
grezeetal., 1991). This is very different from the analy-
sis of correlations in cross-sectional data (acquired in
different subjects in a single state). See Metter et al.
(1984), Moeller et al. (1987), and Horwitz et al. (1984,
1990, 1991) for notable contributions to this related but
separate field. Principal component analysis (PCA),
as a first step, is most suited to the examination of
correlations in a time series (Hope, 1968). PCA extracts

the important features of the correlation matrix in
terms of principal components or eigenvectors. This
approach is formally equivalent to the derivation of
orthonormal spatial nodes from multiunit electrode
recordings or multichannel EEGs [see the many chap-
ters in Dvorak and Holden (1991)]. Spatial modes rep-
resent an elegant reorganization of a time series into
a small number of distributed patterns. Within each
mode, there are high correlations or high functional
connectivity. Conversely, the temporal dynamics of
different spatial modes are independent. Temporal
dynamics refer to how much each mode contributes
to activity over time.

The PCA of imaging data is not straightforward in
the sense that the volume of data can be vast. This
leads to computational memory problems when try-
ing to find the principal components associated with
the data covariance matrix. The simplest way to iden-
tify the principal components (eigenimages) is to use
Singular Value Decomposition where:

[UNV] = SVD{MT}
and
MT=U\VT, 9)

M is the data matrix with one column per pixel. U
and V are unit matrices and X is a diagonal matrix of
singular values. Assuming M has been normalized to
zero mean over columns, the eigenvector solution of
the covariance matrix of M(C{M}) is simply U:

C{M}=M".M = UN.UT
or
C{M}.U = U.\% (10)

An alternative approach was presented in Friston ef
al. (1993), which uses a recursive self calling algo-
rithm. The advantage of recursive PCA over SVD is
(a) that the entire data matrix does not have to be in
working memory at any time and (b) recursive PCA
lends itself to implementation on a parallel architec-
ture. The disadvantages of recursive PCA are (a) it is
more computationally expensive (requires more float-
ing point operations) and (b) requires M to have a
power of 2 columns.

1. Recursive PCA Analysis

The technique is modeled on “L” systems or string
rewriting systems used in the construction of fractal
and self-similar patterns. L systems were introduced
by Lindenmayer in 1968 to model the growth of living
organisms. In these systems, a pattern (primitive) that
is composed of line segments is defined. According
to (production) rules, each segment is replaced by the
scaled pattern primitive. This primitive is constructed
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from line segments that are recursively replaced with
smaller scaled primitives. No “drawing” actually oc-
curs until the scale reaches a specified lower limit. See
Voss (1988) for a full discussion. The charm of these
systems is that the algorithm, which replaces each
line segment of the primitive with smaller versions,
calls itself recursively but implements pattern drawing
only at the smallest scale. In a similar way, the PCA
used here recursively calls itself until the size of the
primitive data matrix reaches a lower limit. Let 6(M)
denote the operation of the PCA operator 6{-} on a
data matrix (M), where M can be bisected [M =
(M;M,)]. The algorithm is defined by the following
equivalence,

6iMy}
) - 6{M, - O{MM, - OIMLD),

= ( 0 oMy}

1)

Karl J. Friston

until the size of M reaches a lower limit (5 = 2.rank
(M)). Then

o{M} = e{C{M}} = Qx,

where Q, are the largest S/2 eigenvectors of the covari-
ance matrix of M (= C{M}). The operator 0{-} recur-
sively calls itself until the multiply bisected subparti-
tions reach a stopping criterion in terms of size (S)
[see Friston et al. (1993) for a full description]. It should
be noted that the key proposal here is that principal
components or eigenimages are a powerful reorgani-
zation of the data and are directly related to the con-
cept of functional connectivity. SVD and recursive
PCA represent two computationally efficient ways of
obtaining these eigenimages.

To pursue the functional connectivity implicated
by intentional behavior, we repeated the word genera-
tion paradigm described above using word shadow-

12)

First PC

. positive

negative

Second PC

Figure 7 SPM{PC;"), SPM{PC,7}, and SPM{PC,"). First and second spatial modes for all voxels entered into the analysis
(those with a nontrivial F:p < 0.05 following ANCOVA). Positive and negative loadings are shown for the first PC.

Only positive loading are displayed for the second PC. ac,

anterior cingulate; fc, left prefrontal cortex.
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Figure 8 PC scores for the first two PCs or spatial modes. Conditions are baseline, fluency,
baseline, . ... These pafterns suggest the first spatial mode is engaged by the task (i.e.,
variance introduced by experimental design). The second mode appears to reflect adaptation

of absolute rCBF over the entire experiment.

ing and verbal fluency. Six subjects performed the two
tasks alternately for 12 scans (order balanced across
subjects). The mean adjusted rCBF equivalents for
each of the k = 12 conditions were subject to recursive
PCA analysis. The first two principal components, or
spatial modes, accounted for almost all the variance
observed (86%). The first mode accounted for 71%
and the second, for 15% of variance. These are seen
in Fig. 7. The third mode accounted for only 4%. The
first spatial mode had positive loadings in the anterior
cingulate (Brodmann’s area, BA 24,32), the left dorso-
lateral prefrontal cortex (DLPFC BA 46) and Broca’s
area (BA 44), the thalamic nuclei, and the cerebellum.
Negative loadings were seen bitemporally and in the
posterior cingulate. This profile is a verbal fluency

‘profile we discussed above (Fig. 3) (Frith et al., 1991).

We have not observed subcortical activation to be so
reliable in previous data. The PC scores, reflecting the
contribution of spatial modes to each condition (Fig.
8), testify to this interpretation. The first mode is very
evident in the verbal fluency tasks, with correspond-
ingly low scores on the baseline. Furthermore, these
scores are largely invariant over time. The second
principal component had its highest positive loading
in the anterior cingulate and appears to correspond
to a monotonic time effect with greatest prominence
in the first three conditions (Fig. 8).

The two spatial modes may represent an intentional
system critical for the intrinsic generation of words
and a second attentional system whose physiology
changes monotonically with time. This adaptation
could reflect a decline in acquisition of perceptual set
(Wise, 1989) as the tasks become familiar [see Posner
et al. (1990) and Pardo ef al. (1990) for evidence impli-
cating the anterior cingulate in attention].

The functionally connected system corresponding
to the first principal component accounted for 71% of

the observable differences in adjusted mean rCBF
from the 12 scans. This is a remarkable observation
in that 71% of the variance in brain physiology was
introduced by experimental design. This is a clear
vindication of the PET technique in the investigation
of functional anatomy and connectivity. Furthermore,
the distributed system highlighted is in exact accord
with that predicted from anatomical connectivity. All
the components of this system (anterior cingulate,
DLPFC, posterior cingulate, and superior temporal
region) have dense and reciprocal connections
(Pandta and Barnes, 1987; Goldman-Rakic, 1987,
1988).

IV. Conclusion

As the last section leaves us in a recursive frame
of mind, the reader is referred to the introduction.
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