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ABSTRACT 

Reliability and validity are statistical concepts that are reviewed and then applied to the field of 

quantitative electroencephalography or qEEG.  The review of the scientific literature 

demonstrated high levels of split-half and test re-test reliability of qEEG and convincing content 

and predictive validity as well as other forms of validity.   qEEG is distinguished from non-

quantitative EEG (“Eye Ball” examination of EEG traces) with the latter showing low reliability 

(e.g., 0.2 to 0.29) and poor inter-rater agreement for non-epilepsy evaluation.  In contrast, qEEG 

is greater than 0.9 reliable with as little as 40 second epochs and remains stable with high test re-

test reliability over many days and weeks.   Predictive validity of qEEG is established by 

significant and replicable correlations with clinical measures and accurate predictions of 

outcome and performance on neuropsychological tests.  In contrast, non-qEEG or “Eye Ball” 

visual examination of the EEG traces in cases of non-epilepsy has essentially zero predictive 

validity.  Content validity of qEEG is established by correlations with independent measures 

such as the MRI, PET and SPECT, the Glasgow Coma Score, neuropsychological tests, etc. 

where the scientific literature again demonstrates significant correlations between qEEG and 

independent measures known to be related to various clinical disorders.  In contrast, non-qEEG 

or “Eye Ball” visual examination of the EEG traces in cases of non-epilepsy has essentially zero 

content validity.  The ability to test and evaluate the concepts of reliability and validity are 

demonstrated by mathematical proof and simulation where one can demonstrate test re-test 

reliability for themselves as well as zero physiological validity of coherence and phase 

differences when using an average reference and Laplacian montage. 

 
Key Terms: Quantitative EEG, Reliability, Validity 
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 Quantitative electroencephalography (qEEG) is distinguished from visual examination of 

EEG traces, referred to as “non-quantitative EEG” by the fact that the latter is subjective and 

involves low sensitivity and low inter-rater reliability for non-epilepsy cases (Cooper et al, 1974; 

Woody, 1966; 1968; Piccinelli et al, 2005; Seshia et al, 2008; Benbadis et al, 2009; Malone et al, 

2009).  In contrast, the quantitative EEG (qEEG) involves the use of computers and power 

spectral analyses and is more objective with higher reliability and higher clinical sensitivity than 

is visual examination of the EEG traces for most psychiatric disorders and traumatic brain injury 

(Hughes and John, 1999).   The American Academy of Neurology draws a distinction between 

digitization of EEG for the purposes of visual review versus quantitative EEG which is defined 

as: “The mathematical processing of digitally recorded EEG in order to highlight specific 

waveform components, transform the EEG into a format or domain that elucidates relevant 

information, or associate numerical results…” (Nuwer, 1997, p. 2).     Thus, the definition of 

quantitative EEG is very broad and pertains to all spectral measures and numerical analyses 

including coherence, power, ratios, etc.    

 The low reliability of visual examination of EEG traces has been known for many years 

(Woody, 1968a; 1968b).   As stated in a recent visual non-qEEG study by Malone et al (2009, 

pg. 2097): 

“The interobserver agreement (Kappa) for doctors and other health care professionals 
was poor at 0.21 and 0.29, respectively. Agreement with the correct diagnosis was also 
poor at 0.09 for doctors and -0.02 for other healthcare professionals.” 

 Or in a study of non-qEEG visual examination of the EEG traces it was concluded by 

Benbadis et al (2009, pg. 843): “For physiologic nonepileptic episodes, the agreement was low 

(kappa = 0.09)” 

 A recent statement by the Canadian Society of Clinical Neurophysiology further 

emphasizes the low reliability of visual examination of EEG traces or non-qEEG in the year 

2008 where they conclude: 

“A high level of evidence does not exist for many aspects of testing for visual sensitivity. 
Evidenced-based studies are needed in several areas, including (i) reliability of LED-
based stimulators, (ii) the most appropriate montages for displaying responses, (iii) 
testing during pregnancy, and (iv) the role of visual-sensitivity testing in the diagnosis of 
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neurological disorders affecting the elderly and very elderly.” (Sehsia et al, 2008, pg. 
133). 

 The improved sensitivity and reliability of qEEG was first recognized by Hans Berger in 

1934 when he performed a qEEG analysis involving the power spectrum of the EEG with a 

mechanical analog computer and later by Kornmuller in 1937 and Grass and Gibbs (1938) (see 

Niedermeyer and Lopes Da Silva, 2005).   qEEG in the year 2010 clearly surpasses conventional 

visual examination of EEG traces because qEEG has high temporal and spatial resolution in the 

millisecond time domain and approximately one centimeter in the spatial domain which gives 

qEEG the ability to measure network dynamics that are simply “invisible” to the naked eye.   

Over the last 40 years the accuracy, sensitive, reliability, validity and resolution of qEEG has 

steadily increased because of the efforts of hundreds of dedicated scientists and clinicians that 

have produced approximately 90,000 qEEG studies cited in the National Library of Medicine’s 

database .    The estimate of 90,000 studies is from sampling of abstracts from the larger universe 

of 103,230 citations which includes both non-quantitative and quantitative EEG studies.  The 

search term “EEG” is necessary because the National Library of Medicine searches article titles 

and rarely if ever is the term “qEEG” used in the title (e.g., this author has published over 150 

peer reviewed articles on qEEG and has never used the term “qEEG or QEEG” in the title).  

Since approximately 1975 it is very difficult to publish a non-qEEG study in a peer reviewed 

journal because of the subjective nature of different visual readers agreeing or disagreeing in 

their opinions about the squiggles of the “EEG” with low “Inter-Rater Reliability” for non-

epilepsy cases (Cooper et al, 1974; Woody, 1966; 1968; Piccinelli et al, 2005; Seshia et al, 2008; 

Benbadis et al, 2009; Malone et al, 2009).   In this paper, I will not discuss the issue of qEEG in 

the detection of epilepsy.  This topic is well covered by many studies (see Niedermeyer and 

Lopes Da Silva, 2005).    Instead, this paper is focused on the non-epilepsy cases, the very cases 

that visual non-qEEG is weakest.   It is useful to first re-visit the standard concepts of 

“Reliability” and “Validity” of quantitative EEG while keeping in mind the historical back 

ground of non-qEEG visual examination of EEG traces which is used in approximately 99% of 

the U.S. hospitals as the accepted standard of care in the year 2010 even though non-qEEG is 

insensitive and unreliable for the evaluation of the vast majority of psychiatric and psychological 

disorders and mild traumatic brain injury.    Given this background, the purpose of this paper is 

to define the concepts of “Reliability” and “Validity” and evaluate these concepts as they apply 
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to the clinical application of qEEG.  Such an endeavor requires some knowledge of the methods 

of measurement as well as about the basic neuroanatomy and neurophysiology functions of the 

brain.  

  It is not possible to cover all clinical disorders and therefore mild traumatic brain injury 

will be used as examples of qEEG validity and reliability.  The same high levels of clinical 

validity and reliability (i.e., > 0.95) of qEEG have been published for a wide variety of 

psychiatric and psychological disorders to cite only a few, for example, attention deficit 

disorders (Mazaheri et al, 2010; van Dongen-Boomsma et al, 2010), ADHD (Gevensleben et al, 

2009); Schizophrenia (Siegle et al, 2010; Begić et al, 2009); Depression (Pizzagalli et al, 2004); 

Obsessive compulsive disorders (Velikova et al, 2010); addiction disorders (Reid et al, 2003); 

anxiety disorders (Hannesdóttir et al, 2010) and many other disorders.  The reader is encouraged 

to visit the National Library of Medicine database at: 

https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed and use the search terms “EEG and xx” 

where xx = a clinical disorder.  Read the methods section to determine that a computer was used 

to analyze the EEG which satisfies the definition of quantitative electroencephalography (qEEG) 

and then read the hundreds of statistically significant qEEG studies for yourself.   Because non-

significant studies are typically not published it is no surprise that all of the clinical studies that 

this author read in the National Library of Medicine database were statistically valid and reliable.  

I was unable to find any clinical studies that stated that qEEG was not valid or not reliable.   This 

is the same conclusion drawn by Hughes and John (1999).   

 

Validity Defined 

 Validity is defined by the extent to which any measuring instrument measures 

what it is intended to measure.  In other words, validity concerns the relationship between 

what is being measured and the nature and use to which the measurement is being 

applied.  One evaluates a measuring instrument in relation to the purpose for which it is 

being used.  There are three different types of validity: 1- Criterion-related validity also 

called “Predictive Validity”, 2- Content validity also called “face validity” and, 3- 

Construct validity.   If a measurement is unreliable then it can not be valid, however, if a 

method is reliable it can also be invalid, i.e., consistently off the mark or consistently 
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wrong.  Suffice it to say that clinical correlations are fundamental to the concept of 

validity and are dependent on our knowledge of basic neuroanatomy and 

neurophysiology.  These concepts are also dependent on our methods of measurement 

and the confidence one has in the mathematical simulations when applied in the 

laboratory or clinical context.    Today there are a wide number of fully tested 

mathematical and digital signal processing methods that can be rapidly evaluated using 

calibrated signals and a high speed computer to determine the mathematical validity of 

any method and I will not spend a lot of time on this topic except for a brief mention of a 

few methods that are not valid when applied to coherence and phase measures because of 

technical limitations, for example, the use of an average reference or the Laplacian 

surface transform and Independent Components Analysis (ICA) and the calculation of 

coherence and phase.   It will be shown in a later section that the average reference and 

the Laplacian distort the natural physiological phase relationships in the EEG and any 

subsequent analyses of phase and coherence are invalidated when these remontaging or 

reconstruction methods are used (Rappelsberger, 1989; Nunez, 1981).  The average 

reference and Laplacian and ICA methods are valid for absolute power measures but 

have limitations for phase measures which is a good example of why validity is defined 

as the extent to which a measuring instrument measures what it is intended to measure. 

Leaving the mathematical and simulation methods aside for the moment, the most 

critical factor in determining the clinical validity of qEEG is knowledge about the 

neuroanatomy and neurophysiology and functional brain systems because without this 

knowledge then it is not possible to even know if a given measurement is clinically valid 

in the first place.    For example, neurological evaluation of space occupying lesions has 

been correlated with the locations and frequency changes that have been observed in the 

EEG traces and in qEEG analyses, e.g., lesions of the visual cortex resulted in distortions 

of the EEG generated from the occipital scalp locations or lesions of the frontal lobe 

resulted in distortions of the EEG traces arising in frontal regions, etc.   However, early 

neurological and neuropsychological studies have shown that function was not located in 

any one part of the brain (Luria, 1973).   Instead the brain is made up of complex and 

interconnected groupings of neurons that constitute “functional systems”, like the 

“digestive system” or the “respiratory system” in which cooperative sequencing and 
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interactions give rise to an overall function at each moment of time (Luria, 1973).   This 

widely accepted view of brain function as a complicated functional system became 

dominant in the 1950s and 1960s is still the accepted view today.   For example, since the 

1980s new technologies such as functional MRI (fMRI), PET, SPECT and qEEG/MEG 

have provided ample evidence for distributed functional systems involved in perception, 

memory, drives, emotions, voluntary and involuntary movements, executive functions 

and various psychiatric and psychological dysfunctions (Mesulam, 2000).   Modern PET, 

qEEG, MEG and fMRI studies are consistent with the historical view of “functional 

systems” presented by Luria in the 1950s (Luria 1973), i.e., there is no absolute 

functional localization because a functional systems of dynamically coupled sub-regions 

of the brain is operating.    For example, several fMRI and MRI studies (e.g., diffusion 

tensor imaging or DTI) have shown that the brain is organized by a relatively small 

subset of “Modules” and “Hubs” which represent clusters of neurons with high within 

cluster connectivity and sparse long distance connectivity (Hagmann et al, 2009; Chen et 

al, 2008; He et al, 2009).  Modular organization is a common property of complex 

systems and ‘Small-World’ models in which maximum efficiency is achieved when local 

clusters of neurons rely on a small set of long distance connections in order to minimize 

the “expense” of wiring by shortened time delays between modules (Buzsaki, 2006; He et 

al, 2009).   Also, recent qEEG and MEG analyses have demonstrated that important 

visually invisible processes such as directed coherence, phase delays, phase locking and 

phase shifting of different frequencies is critical in cognitive functions and various 

clinical disorders (Buszaki, 2006; Sauseng and Klimesch, 2008; Thatcher et al, 2009a).   

Phase shift and phase synchrony has been shown to be one of the fundamental processes 

involved in the coordination of neural activity located in spatially distributed “modules” 

at each moment of time (Freeman and Rogers, 2002; Freeman et al, 2003; Sanseug and 

Klemish, 2008; Breakspear and Terry, 2002; Lachaux et al, 2000; Thatcher et al, 2005c; 

2009; 2008b). 

 

Validity of Coherence and Phase 

 Coherence is a measure of the stability of phase differences between two time 

series.  Coherence is not a direct measure of an attribute like “temperature” or “volts”, 
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instead it is a measure of the “reliability” phase differences in a time series.  If the phase 

differences are constant and unchanging over time then coherence = 1.    If, on the other 

hand, phase differences are changing over time and are random over time then coherence 

= 0 (i.e., unreliable over time).    Therefore, coherence is not a straightforward analytical 

measure like absolute power, rather coherence depends on multiple time samples in order 

to compute a correlation coefficient in the frequency or time domains.   The validity and 

reliability of coherence fundamentally depends on the number of time samples as well as 

the number of connections (N) and the strength of connections (S) in a network or 

Coherence = N x S.    Coherence is sensitive to the number and strength of connections 

and therefore as the number or strength of connections decreases then coherence 

decreases because it is a valid network measure and as one would expect, the reliability 

of coherence declines when the number or strength of connections declines.   Here is an 

instance where the validity of coherence is established by the fact that the reliability is 

low, i.e., no connections means no coupling and coherence approximates zero.   

In order to evaluate the validity of coherence it is important to employ simulations 

using calibrated sine waves mixed with noise.  In this manner a linear relationship 

between the magnitude of coherence and the magnitude of the signal-to-noise ratio can be 

demonstrated which is a direct measure of the predictive validity and concurrent validity 

of coherence and such a test is essential in order to evaluate the meaning of the reliability 

of coherence.  For example, if one were to use an invalid method to compute coherence 

such as with an average reference, then it is irrelevant what the stability of the measure is 

because coherence is no longer measuring phase stability between two time series and 

therefore has limited physiological validity. 

 Figure 1 is an example of a validation test of coherence using 5 Hz sine waves 

and a 30 degree shift in phase angle with step by step addition of random noise.   As 

shown in figure 1, a simple validity test of coherence is to use a signal generator to create 

a calibrated 1 uV sine wave at 5 Hz as a reference signal, and then compute  
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Fig. 1- shows an example of four 1 uV and 5 Hz sine waves with the second to the 4th sine wave shifted by 
30 degrees.    Gaussian noise is added incrementally to channels 2 to 4.  Channel 2 = 1 uV signal + 2 uV of 
noise, channel 3 = 1 uV signal + 4 uV of noise and channel 4 = 1 uV signal +  6 uV of noise.   Nineteen 
channels were used in the analyses of coherence in 2 uV of noise increments.    The FFT analysis is the 
mean of thirty 2 second epochs sampled at 128 Hz. 
 
coherence to the same 1 uV sine wave at 5 Hz  but shifted by 30 degrees and adding 2 uV 

of random noise, then the next channel add 4 uV of random noise, then 6 uV, etc.   

Mathematically, validity equals a linear relationship between the magnitude of coherence 

and the signal-to-noise ratio, i.e., the greater the noise then the lower is coherence.   If 

one fails to obtain a linear relationship then the method of computing coherence is 

invalid.  If one reliably produces the same set of numbers but a non-linear relationship 

(i.e., no straight line) occurs then this means that the method of computing coherence is 

invalid (the method reliably produces the wrong results or is reliably off the mark).   

Figure 2, shows the results of the coherence test in figure 1 that demonstrates a linear 

relationship between coherence and the signal-to-noise ratio, thus demonstrating that a 

standard FFT method of calculating coherence using a single common reference (e.g., 

one ear, linked ears, Cz, etc.)  is valid.    Note that the phase difference of 30 degrees 



 10

 

Fig. 2 -   Top is coherence (y-axis) vs signal-to-noise ratio (x-axis).   Bottom is phase angle on the y-axis 
and signal-to-noise ratio on the x-axis.  Phase locking is minimal or absent when coherence is less than 
approximately 0.2 or 20%.  The sample size was 60 seconds of EEG data and smoother curves can be 
obtained by increasing the epoch length. 
 
 
is preserved even when coherence is < 0.2.     The preservation of the phase difference 

and the linear decrease as a function of noise is a mathematical test of the validity of 

coherence. 

 

Why the average Reference or Laplacian are Physiologically Invalid when 
Computing Coherence and Phase Differences 
 An important lesson in reliability and validity is taught when examining any study 

that fails to use a common reference when computing coherence.   For example, the 

average reference mathematically adds the phase differences between all combinations of 

scalp EEG time series and then divides by the number of electrodes to form an average 

and then the average is subtracted time point by time point from the original time series 

recorded from each individual electrode thereby replacing the original time series with a 
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distorted time series.   This process scrambles up the physiological phase differences so 

that they are irretrievably lost and can never be recovered.  The method of mixing phase 

differences precludes meaningful physiological or clinical correlations since measures 

such as conduction velocity or synaptic rise or fall times can no longer be estimated due 

to the average reference.  Also, coherence methods such as “Directed Coherence” can not 

be computed and more sophisticated analyses such as phase reset and phase shift and 

phase lock are precluded when using an average reference.   The mixing together of 

phase differences in the EEG traces is also a  problem when using the Laplacian 

transform and, similarly, reconstruction of EEG time series using Independent 

Component Analyses (ICA), also replaces the original time series with an altered time 

series that eliminates any physiological phase relationships and therefore is an invalid 

method of calculating coherence.  One may obtain high reliability in test re-test measures 

of coherence, however, the reliability is irrelevant because the method of computation 

using an average reference or a Laplacian to compute coherence is invalid in the first 

place. 

 As pointed out by Nunez (1981) “The average reference method of EEG 

recording requires considerable caution in the interpretation of the resulting record” (p. 

194) and that “The phase relationship between two electrodes is also ambiguous: (p. 

195).   As mentioned previously, when coherence is near unity then the oscillators are 

synchronized and phase and frequency locked.   This means that when coherence is too 

low, e.g., < 0.2, then the estimate of the average phase angle may not be stable and phase 

relationships could be non-linear and not synchronized or phase locked.    

 The distortions and invalidity of the average reference and Laplacian transform 

are easy to demonstrate using calibrated sine waves mixed with noise just as was done in 

figures 1 and 2.    For example, figure three is the same simulation with a 300 phase shift 

as used for coherence with a common reference as shown in figure 2.  The top row is 

coherence on the y-axis  and the bottom row is the phase difference, the left column is 

using the average reference and the right column is the Laplacian.   It can be seen in 

figure 3 that coherence is extremely variable and does not decrease as a linear function of 

signal-to-noise ratio using either the average reference nor the Laplacian montage.   It can 
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also be seen in figure 3 that EEG phase differences never approximate 30 degrees and are 

extremely variable at all levels of the signal-to-noise ratio.    

   

Fig. 3-.   Left top is coherence (y-axis) vs signal-to-noise ratio (x-axis) with a 300 phase shift as shown in  
figure 2 using the average reference.   The left bottom is phase differences in degrees in the y-axis and the  
x-axis is the signal-to-noise ratio using the average reference. The right top graph is coherence (y-axis) vs  
signal-to-noise ratio (x-axis) using the Laplacian montage.  The right bottom is phase difference on the  
y-axis and signal-to-noise on the x-axis using the Laplacian montage.  In both instances, coherence drops  
off rapidly and is invalid with no linear relationship between signal and noise .   The bottom graphs show 
that both the average reference and the Laplacian montage fails to track the 300 phase shift that was present  
in the original time series.  In fact, the phase difference is totally absent and unrepresented when using an 
average reference or a Laplacian montage and these simulations demonstrate that the average reference 
and the Laplcain montage are not physiologically valid because they do not preserve phase differences or  
the essential time differences on which the brain operates.    
 

 The results of these analyses are consistent with those by Rappelsberger, 1989 

who emphasized the value and validity of using a single reference and linked ears in 

estimating the magnitude of shared or coupled activity between two scalp electrodes.   

The use of re-montage methods such as the average reference and Laplacian source 

derivation are useful in helping to determine the location of the sources of EEG of 
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different amplitudes at different locations.  However, the results of this analysis which 

again confirm the findings of Rappelsberger, 1989 showed that coherence is invalid when 

using either an average reference or the Laplacian source derivation.  This same 

conclusion was also demonstrated by Korzeniewska, et al (2003) and Essl and 

Rappelsburger (1998); Kamiński and Blinowska (1991); Kamiński et al (1997).    

 The average reference and the Laplacian transform also distort measures of phase 

differences which is also easy to demonstrate by using calibrated sine waves.  For 

example, a sine wave at Fp1 of 5 Hz and 100 uV with zero phase shift, Fp2 of 5 Hz and 

100 uV with 20 deg phase shift; F3 of 5 Hz and 100 uV with 40 deg phase shift; F4 of 5 

Hz and 100 uV with 60 deg phase shift; C3 of 5 Hz and 100 uV with 80 deg phase shift; 

C4 of 5 Hz and 100 uV with 100 deg phase shift; P3 of 5 Hz and 100 uV with 120 deg 

phase shift; P4 of 5 Hz and 100 uV with 140 deg phase shift; O1 of 5 Hz and 100 uV 

with 160 deg phase shift and O2 of 5 Hz and 100 uV with 180 deg phase shift and 

channels F8 to Pz = 0 uV and zero phase shift.   Figure 4 below compares the incremental 

phase shift with respect to Fp1 using Linked Ears common reference (solid black line), 

the Average Reference (long dashed line), and the Laplacian (short dashed line).   This is 

another demonstration of how a non-common reference like the average reference and the 

Laplacian scramble phase differences and therefore caution should be used and only a 

common reference recording (any common reference and not just linked ears) is the only 

valid method of relating phase differences to the underlying neurophysiology, e.g., 

conduction velocities, synaptic rise times, directed coherence, phase reset, etc. 

 The analyses of the average reference and Laplacian to compute coherence should 

not be interpreted as a blanket statement that all of qEEG is invalid.  On the contrary, 

when quantitative methods are properly applied and links to the underlying 

neuroanatomy and neurophysiology are maintained then qEEG analyses are highly 

reliable and physiologically valid.   The lesson is that users of this technology must be 

trained and the use of calibration sine analyses should be readily available so that the 

users of qEEG can test basic assumptions themselves. 
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Fig. 4 – Demonstration of distortions in phase differences in a test using 20 deg 
increments of phase difference with respect to Fp1.   The solid black line is using a 
Linked Ears common reference which accurately shows the step by step 20 deg. 
Increments in phase difference.   The average reference (dashed blue line) and the 
Laplacian (dashed red line) significantly distort the phase differences.   

 

 
Validity by Hypothesis Testing and qEEG Normative Data Bases 

 The Gaussian or Normal distribution is an ideal bell shaped curve that provides a 

probability distribution which is symmetrical about its mean.   Skewness and kurtosis are 

measures of the symmetry and peakedness, respectively of the gaussian distribution.  In 

the ideal case of the Gaussian distribution skewness and kurtosis = 0.  In the real world of 

data sampling distributions skewness and kurtosis = 0 is never achieved and, therefore, 

some reasonable standard of deviation from the ideal is needed in order to determine the 

approximation of a distribution to Gaussian.  The primary reason to approximate 

"Normality" of a distribution of EEG measures is that the sensitivity (i.e., true positive 

rate) of any normative EEG database is determined directly by the shape of the sampling 



 15

distribution.   In a normal distribution, for example, one would expect that approximately 

5% of the samples will be equal to or greater than ± 2 standard deviations and 

approximately 0.13 % ± 3 SD. (Hayes, 1973; John, 1977; John et al, 1987; Prichep, 2005; 

Thatcher et al, 2003a; 2003b). 

 A practical test of the sensitivity and accuracy of a database can be provided by 

cross-validation.   There are many different ways to cross-validate a database.   One is to 

obtain independent samples and another is to use a leave-one-out cross-validation method 

to compute Z scores for each individual subject in the database.   The former is generally 

not possible because it requires sampling large numbers of additional subjects who have 

been carefully screened for clinical normality without a history of problems in school, 

etc.   The second method is certainly possible for any database.   Gaussian cross-

validation of the EEG database used to evaluate TBI was accomplished by the latter 

method in which a subject is removed from the distribution and the Z scores computed 

for all variables based on his/her respective age matched mean and SD in the normative 

database.  The subject is placed back in the distribution and then the next subject is 

removed and a Z score is computed and this process is repeated for each normal subject 

to obtain an estimate of the false positive hit rate.  A distribution of Z scores for each of 

the EEG variables for each subject was then tabulated.   Figure 5 is an example of the 

Gaussian  

 
Fig. 5 – Example of Gaussian Cross-Validation of EEG Normative Database (from Thatcher et al, 
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2003). 
 

distributions of the cross-validated Z scores of 625 subjects from birth to 82 years of age 
used in a normative EEG database (Thatcher et al, 2003a). 
 
 
Table I:  Cross Validation of EEG Normative Database (from Thatcher et al ,  
2003).  
 

Measure % >2 SD % <2 SD % >3 SD % <3 SD 
Delta Amplitude Asym. 2.58 3.08 0.21 0.19 
Theta Amplitude Asym. 2.29 2.62 0.15 0.13 
Alpha Amplitude Asym. 2.71 2.72 0.18 0.19 
Beta Amplitude Asym. 2.68 2.65 0.15 0.15 
Delta Coherence 1.99 2.14 0.14 0.22 
Theta Coherence 2.22 1.88 0.22 0.16 
Alpha Coherence 2.55 1.62 0.18 0.18 
Beta Coherence 2.20 1.38 0.18 0.10 
Delta Phase † 0.89 3.52 0 0.23 
Theta Phase † 1.61 1.87 0.04 0.13 
Alpha Phase † 1.61 1.66 0.04 0.24 
Beta Phase † 2.83 0.72 0.27 0.03 
Absolute Power † 4.15 1.67 0.23 0.12 
Relative Power 4.09 0.52 0.68 0 
Total Power † 4.23 1.60 0.08 0.04 
Average 2.58 1.98 0.18 0.14 
† Data was logged transformed 
 

 Table I shows the results of a Gaussian cross-validation of the 625 subjects in the 

normative EEG database used in the evaluation of patients (Thatcher et al, 2003).  A 

perfect cross-validation would be 2.3% at + 2 S.D., 2.3% at – 2 S.D., 0.13% at + 3 S.D. 

and 0.13 % at – 3 S.D.   Table I shows a cross-validation grand average of 2.28% ± 2 

S.D. and 0.16 % ± 3 S.D.  The cross-validation result shows that the EEG normative 

database is statistically accurate and sensitive with slight differences between variables 

that should be taken into account when evaluating individual Z scores.   
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Fig. 6 - Illustration of method of computing error rates or sensitivity of a 
normative EEG database based on the cross-validation deviation from Gaussian 
(from Thatcher et al, 2003a). 
 

Figure 6 is a bell shaped curve showing the ideal Gaussian and the average cross-

validation values of the EEG normative database used to evaluate patients.   The error 

rates or the statistical sensitivity of a qEEG normative database are directly related to the 

deviation from a Gaussian distribution.   Figure 6 also illustrates the method of estimating 

the statistical sensitivity of a normative EEG database in terms of the deviation from 

Gaussian.  

 Table II is an example of the calculated sensitivity of a EEG normative database 

for different age groups using the method described in figure 6. 
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Table II – Normative EEG database sensitivities for different age groups at +/- 2 
standard deviations and +/- 3 standard deviations (from Thatcher et al, 2003a). 
 

Predictive Validity of Normative Databases 

 Predictive (or criterion) validity has a close relationship to hypothesis testing by 

subjecting the measure to a discriminant analysis or cluster analysis to some statistical 

analysis in order to separate a clinical sub-type from a normal reference database.   

Nunnally (1978) gives a useful definition of predictive validity as:   “when the purpose is 

to use an instrument to estimate some important form of behavior that is external to the 

measuring instrument itself, the latter being referred to as criterion [predictive] validity.”  

For example, science “validates” the clinical usefulness of a measure by its false positive 

and false negative rates and by the extent to which there are statistically significant 

correlations to other clinical measures and, especially, to clinical outcomes (Hughes and 

John, 1999).  

 An example of predictive validity of the Linked Ears qEEG normative database is 

the use of a discriminant function to evaluate the false positive/false negative 

classification rate using a normative database and TBI patients (Thatcher et al, 1989).   In 



 19

this study the traumatic brain injured patients were distinguished from age matched 

normal control subjects at a classification accuracy =  96.2% .    Four different cross-

validations were conducted in the Thatcher et al (1989) study and showed similar 

accuracies although the strength of the discrimination declined as a function of time from 

injury to test. 

 

Fig. 7 – Example of predictive and content validity by clinical correlations of 
qEEG with Neuropsychological test scores (Thatcher et al, 2001a). 
 

Figure 7 shows the correlation to neuropsychological test scores in an independent 

replication of the Thatcher et al (1989) study.   In this study a similar discriminant 

function produced similar sensitivities and also predicted the Glasgow Coma Score with a 

correlation of 0.85 (Thatcher et al, 2001a).   Another example of predictive validity is the 

ability of qEEG normative values to predict cognitive functioning.   Figure 8 shows 

correlations to Full Scale I.Q. as an example of predictive validity and content validity .    

A more complete analysis of the predictive validity of a normative EEG database is 

shown in Table III (Thatcher et al, 2003; 2005a; 2005b).    In Table III the percentage of 

statistically significant correlations at P < .01.  between qEEG normative EEG and 
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WRAT School Achievement scores and measures of intelligence are shown.    The 

relative effect size of the normative EEG correlations differs for different measures which 

is valuable information when using any normative database, not just a qEEG normative 

database.  Similar high and significant correlations between qEEG and 

neuropsychological test performance have been published in many studies.  A search of 

the National Library of Medicine’s database using the search terms: EEG and 

Neuropsychological Tests produced 1,351 citations. 

Figure 8 -  Example of content validity demonstrated by statistically significant 
correlations between full scale I.Q. and qEEG (from Thatcher et al, 2005c). 
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Table III – Examples of predictive validity by clinical correlations between qEEG 
and  intelligence (WISC-R) and academic achievement tests (WRAT) (from 
Thatcher et al, 2003a). 
 

Examples of Content Validity of Normative Databases 

   Content validity is defined by the extent to which an empirical measurement 

reflects a specific domain of content.  For example, a test in arithmetic operations would 

not be content valid if the test problems focused only on addition, thus neglecting 

subtraction, multiplication and division.  By the same token, a content-valid measure of 
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cognitive decline following a stroke should include measures of memory capacity, 

attention and executive function, etc.    

 Normative databases are distinct from small experimental control groups in their 

scope and their sampling restriction to clinically normal or otherwise healthy individuals 

for the purpose of comparison.   Another distinguishing characteristic of normative 

databases is the ability to compare a single individual to a population of “normal” 

individuals in order to identify the measures that are deviant from normal and the 

magnitude of deviation.    Normative databases themselves do not diagnose a patient’s 

clinical problem.  Rather, a trained professional first evaluates the patient’s clinical 

history and clinical symptoms and complaints and then uses the results of normative 

database comparisons in order to aid in the development of an accurate clinical diagnosis.  

Most importantly to link functional localization of deregulated brain regions (i.e., 

anatomical hypotheses) to a patient’s symptoms and complaints. 

 There are many examples of the clinical content validity of qEEG and normal 

control groups in ADD, ADHD, Schizophrenia, Compulsive disorders, Depression, 

Epilepsy, TBI and a wide number of clinical groupings of patients as reviewed by 

Hughes and John, (1999).   In most of these studies an assortment of clinical measures 

were correlated to a variety of brain EEG sources related to the disorder under study.  

One of the most consistent and relevant findings is anatomical localization related to 

different psychiatric and psychological disorders, e.g., cingulate gyrus and depression, 

right parietal lobe and spatial neglect, left angular gyrus and dyslexia, etc.   qEEG 

anatomical correlations with clinical disorders form the foundation of modern day qEEG 

which is another example of content validity.   Since 1999, the number of qEEG studies 

demonstrating anatomical and frequency clinical content validity is several hundred.  For 

example, all clinical LORETA qEEG studies demonstrate anatomical content validity in 

that there are no published studies showing low localization accuracy when using 

LORETA.    The term “Low Resolution Electromagnetic Tomography” refers to a 

“smearing” around the spatially accurate maximum in the center of a spatial volume.  

This is defined by the point-spread function of the Laplacian spatial operator in LORETA 

Pascual-Marqui et al, 1994; Pascual-Marqui, 1999).    This means that LORETA is 

spatially accurate but with a smeared resolution like a probability cloud.    Clinical 
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correlations consistent with PET and SPECT and fMRI are abundant in today’s scientific 

literature (see the National Library of Medicine database at: 

https://www.ncbi.nlm.nih.gov/sites/entrez and see the section on “Validity of LORETA” 

for some specific citations. 

 

Anatomical Hypothesis Testing and Planned qEEG Comparisons 

 The best use of parametric statistics is to form hypotheses prior to conducting an 

analysis in a procedure referred to as “Planned Comparisons” (Hayes, 1973).  In this 

manner, one does not need to resort to multiple comparisons which are performed only 

when an experimenter has no idea about what the test is likely to yield and is totally 

ignorant of possible statistically significant differences.  Because one has no idea what to 

expect it is not possible to form hypotheses and one then must resort to multiple 

comparisons which have high Type II errors (saying something is false when it is not 

false) in order to reduce the Type I errors (saying something is true when it is not true) 

because of the total ignorance of possible relationships between groups or between 

variables.    

 Planned comparisons are more robust and valid than multiple comparisons 

because specific hypotheses are generated prior to conducting statistical tests which 

markedly minimizes the probability of both Type I and Type II errors. A complaint 

against qEEG is that there are such a large number of statistical tests and one would 

expect 5% to be significant by chance alone.   The problem with this argument is that the 

5% by chance must be random in space and in qEEG features.   The random chance 

argument falls to the way side when there are focal anatomical deviations that were 

predicted prior to analysis.   Additional content validity is when the deviant qEEG 

findings are located in anatomical regions known to be linked to the patient’s symptoms 

and clinical history.   For example, the MRI uses approximately 10,000 voxels and one 

would expect 500 to be significant by chance at P < .05 if these 500 voxels are randomly 

distributed throughout the volume.   However, if 100 voxels are statistically significant in 

the right parietal lobe which happens to be where the patient was struck on the head, then 

the 5% significant multiple test argument is not valid and must be discarded.   The same 

is true for the qEEG, for example, if one uses planned comparisons and predicts that the 
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left parietal lobe will be deviant from normal in a dyslexic child prior to recording EEG 

and the qEEG shows many deviations from normal in the left parietal region then this can 

not be explained by chance alone.   The use of planned comparisons is especially useful 

when using LORETA source localization methods because thousands of voxels are 

involved.    An example, of planned comparisons is in figure 9.   Here the surface qEEG 

analyses showed focal deviation from normal in the right hemisphere in a patient that was 

struck with a bat near to his right parietal lobe.  The sources of the right parietal lobe 

deviations from normal are then predicted to appear in particular Brodmann areas prior to 

launching LORETA.   Once LORETA is launched then the frequency and anatomical 

hypotheses can be tested to determine their accuracy and validity. 

 

Fig. 9-  Example of “Planned comparisons” using hypothesis creation prior to launching LORETA.  
Content and construct validity are present because the patient was hit on the right parietal lobe and the right 
parietal lobe shows deviant EEG activity (e.g., > 2 st. dev.)    Further construct validity is established by 
LORETA analyses that confirm anatomical hypotheses based on the surface EEG locations and frequencies 
of deviance. 
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Predictive Validity and qEEG  

 Predictive validity is sometimes referred to as “criterion validity” and has a close 

relationship to hypothesis testing by subjecting the measure to an independent test of its 

ability to predict clinical measures such as severity of injury or intelligence, attention, 

executive function, etc.  Nunnally (1978) gives a useful definition of predictive validity 

as:   “when the purpose is to use an instrument to estimate some important form of 

behavior that is external to the measuring instrument itself, the latter being referred to as 

criterion-validity.”  For example, one “validates” a written driver’s license test by 

hypothesizing that it accurately predicts how well some group of persons can operate an 

automobile.  If the driving test fails to predict driving competence, then the test must be 

rejected or replaced.   In the case of traumatic brain injury (TBI) one “validates” the 

qEEG by showing that it accurately predicts severity of TBI as measured by Hospital 

admission scores such as the Glasgow Coma Score (GCS) or length of coma or in other 

independent tests such as neuropsychological tests, etc. (Hughes and John, 1999). 

 

False Positive and False Negative Error Rates of qEEG: Example of Content 
Validity in Traumatic Brain Injury 

 Peer reviewed scientific publications of 608 mild TBI patients compared to 108 

age matched normal subjects demonstrated, in independent cross-validations an average 

false positive rate approximately 5% and an average false negative rate of approximately 

= 10% to 15% (Thatcher et al, 1989).  Similar levels of sensitivity (the probability that a 

test result will be positive when the disorder is present) and specificity (the probability 

that at test result will be negative when the disorder is not present) were reported in a 

series of independent and replicated qEEG studies of TBI for the detection of a pattern 

consistent with traumatic brain injury as a causal agent (Thatcher et al, 1991; 2001a; 

Thornton, 1999; Thornton and Cormody, 2005 and Leon-Carrion et al, 2008a).     

Obtaining a content-valid measure of any phenomena involves at least three interrelated 

steps: 1- one must be able to specify the full domain of content that is relevant, 2- one 

must be able to identify the selection of relevant measures from the larger universe of 

possible measures with the understanding that over sampling is usually necessary and 3- 
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one must be able to test the content validity of the measuring instrument and/or be able to 

cite the peer reviewed literature in which the content-validity of the qEEG had been 

tested.  As stated by Cronback (1977, pg. 447) “One validates, not a test, but an 

interpretation of data arising from a specified procedure”.  This distinction is crucial 

because it is quite possible for a measuring instrument to be relatively valid for 

measuring one kind of phenomenon but entirely invalid for assessing other phenomena.   

The purpose of qEEG discriminant functions is not to derive a diagnosis because the 

diagnosis should be based on the patient’s clinical history and symptoms and complaints.   

qEEG discriminant functions are designed to further evaluate the extent, locations and 

severity of the EEG patterns that are present in individuals already diagnosed with a 

disorder. 

 qEEG involves the measurement of a relatively large number of electrical 

processes some of which may be affected by a traumatic brain injury (TBI).  For 

example, animal studies and imaging studies in humans have demonstrated that maximal 

damage to the brain following TBI occurs at the interface between the brain and the skull 

bone (Ommaya, 1968; 1971; 1995).  Another primary and common injury to the brain 

due to TBI are “shear” forces in which rapid acceleration/deceleration results in different 

brain parts moving at different rates, for example, the gray matter moves faster and 

further than the white matter thus stretching axonal fibers, etc. (Ommaya, 1968).  Thus, a 

content valid qEEG measure of TBI should be capable of measuring electrical activity in 

frontal and temporal lobes where the brain-to-skull forces are greatest.  Similarly, a 

content valid qEEG test of TBI must be capable of measuring EEG phase and EEG 

coherence which reflect the axonal conduction velocities and long distance cortical 

communication linkages (Thatcher et a, 1989; 1998b; 2001).   If these measures are 

omitted then the test is not valid for the same reason that a test of arithmetic is invalid if it 

omits addition and subtraction.   Over the years there is reasonable consistency of qEEG 

findings in TBI across studies which can be summarized by: 1- reduced power in the 

higher frequency bands (8 to 40 Hz) which is linearly related to the magnitude of injury 

to cortical gray matter, 2- increased slow waves in the delta frequency band (1 to 4 Hz) in 

the more severe cases of TBI which is linearly related to the magnitude of cerebral white 

matter injury and, 3- changes in EEG coherence and EEG phase delays which are linearly 
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related to the magnitude of injury to both the gray matter and the white matter, especially 

in frontal and temporal lobes (Thatcher, 2008).   

 

qEEG Construct Validity 

 Construct validity is concerned with the validity of empirical measures and 

hypothesis testing of theoretical concepts.  As Carmines and Zeller (1979) state: 

“Construct validity is concerned with the extent to which a particular measure relates to 

other measures consistent with theoretically derived hypotheses concerning the concepts 

that are being measured”.   Construct validity typically involves three steps:  1- the 

theoretical relationship between the concepts themselves must be specified and testable 

hypotheses stated, 2- the empirical relationship between the measures of the concepts 

must be examined and, 3- the empirical evidence must be interpreted in terms of how it 

affirms, rejects or clarifies the construct validity of the particular measure.   

 For example, in qEEG measures of traumatic brain injury one hypothesis is that 

rapid acceleration/deceleration contuses (bruises) brain tissue especially where the brain 

sits on the bony skull vault (Ommaya, 1968; 1995), another theory is that damage to 

neuronal membranes will results in reduced ionic flows and reduced amplitude of the 

EEG and high frequencies and a shift in frequency toward the theta and delta frequencies 

(lower frequency ranges).    These two theoretical hypotheses regarding which qEEG 

measures would be expected to change following TBI have been tested and confirmed in 

the peer reviewed scientific literature (Randolph and Miller, 1998; Thatcher et al, 1989; 

1991; 2001; 1998a; 1998b; Thornton, 1999; Thornton and Carmody, 2005; Leon-Carrion, 

2008a; 2008b; Cao et al, 2008).    

The qEEG is also used for prognoses in the neurointensive care unit.  Fabregas et 

al (2004) reported a cross-validation performance error of 3.06% (95% confidence 

interval) for predicting recovery from coma.   Similar accuracy of predicting recovery of 

consciousness was reported by others (Shields et al, 2007; Buzea, 1995; Jordan, 1993; 

Scheuer, 2002, Claassen, 2000; Hyllienmark and Amark, 2007; Kane et al, 1998; 

Thatcher et al, 1991).  Jordan (1993) reported that qEEG can impact medical decision-

making in 81% of the monitored patients and Claassen et al (2000) reported that qEEG 

findings influenced therapeutic management with decisive decisions on many occasions.   
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 Figure 10 is an example of construct validity of the qEEG in the measurement of 

TBI in which correlations of MRI were used to test the null hypothesis = 0, about damage 

to the average concentration of ionic channels in a volume of cortex that produces EEG 

(Thatcher et al, 1998a; 1998b; 2001b). 

 

Fig. 10.  An example of construct validity of the qEEG to correlate with the MRI in the 
estimate of traumatic brain injury (adapted from Thatcher et al, 1998a; 1998b). 
 

In fig. 10, construct validity of qEEG was tested by examining the hypothesized 

relationship between the integrity of gray matter membranes using the MRI and the 

amplitude and coherence of the EEG.  The hypothesis predicted reduced connectivity and 

a decline in amplitude of the EEG related to reduced integrity of neural membranes.  The 

results of the construct validity tests of the qEEG in TBI were born out as valid as 

reported in peer reviewed publications (Thatcher et al, 1998a; 1998b; 2001b).  These 

same studies also tested content validity by correlating the independent MRI measures 

with selected qEEG measures and finally, predictive validity was also tested by 

correlations with neuropsychological test scores which co-varied with both the qEEG and 
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the MRI in a predictable manner.   A similar cross-validation study was performed by 

Korn et al, (2005) showing significant correlations between LORETA current source 

activity and SPECT scans in TBI patients. 

 

Validity of a LORETA qEEG Normative Database 

 There are over 795 peer reviewed journal articles on the use of LORETA for the 

identification of the 3-dimensional sources of the EEG in many different clinical 

populations.   Because different regions in the brain are involved in different functional 

systems, then the reliability and validity of LORETA is established by the degree to 

which accurate localization is demonstrated and by repeatability across subjects and 

across experiments.   It is easy to demonstrate that different samples of EEG yield the 

same localization and/or that a particular local event in the EEG corresponds to an 

expected source of that event, for example, alpha spindles maximum in O1 and O2 are 

localized to the occipital cortex by LORETA and not some where unexpected, e.g., right 

temporal lobe, etc.   This is an example of content validity. 

 The reliability and validity of LORETA source localization can be demonstrated 

using mathematical simulations and standard tests in Systat and SPSS as well as by 

determining that the distribution of current sources is represented by a Gaussian 

distribution.   To the extent the individual variables are Gaussian distributed then the 

mathematics of parametric statistics are valid and useful.   Thus, step one in evaluating 

the validity of a LORETA normative database is to test and establish that the current 

sources are Gaussian distributed.  Figure 11 shows the distribution of current source 

densities after log10 transform in 1 Hz frequency bands from 1 to 9 Hz.   Figure 11 also 

shows that a reasonable approximation to a Gaussian distribution was achieved by the 

log10 transform.   The distribution of current source densities after the Box-Cox transform 

were essential the same as for the log10 and therefore are not displayed. 
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Figure 11:  The distribution of the Z scores of the current source density LORETA values 
at 1 Hz resolution.  The y-axis is the number or count and the x-axis is the Z Score, 
defined as the mean – each value in each of the 2,394 pixels divided by the standard 
deviation (from Thatcher et al, 2005b).    
 

 Standard cross-validation methods can also be used to establish reliability and 

validity.   That is, the classification of normal subjects as not being normal by a leave-

one-out cross-validation procedure or by a direct cross-validation procedure provides an 

estimate of the false positives (Type I error) and false negatives (Type II error) of the 

normative database. Table IV shows the skewness and kurtosis of the log10 transformed 

data and the percentages of Z scores at ± 2 standard deviations and ± 3 standard 

deviations for each of the 1 Hz frequency bands for the eyes closed condition for linked 

ears reference.   The sensitivities ranged from 95.64% at 2 standard deviations to 99.75% 

at 3 standard deviations.  Average skewness = 0.29 and average kurtosis = 0.68   Thus, 

gaussianity can be approximated at a frequency resolution of 1 Hz. 
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Table IV- Results of a leave-one-out cross-validation of a LORETA normative database (from Thatcher et al, 2005b) 
 

The results of a leave-one-out cross-validation are published in Thatcher et al (2005a; 

2005b). 

 Another method of establishing content and construct validity of a LORETA 

normative database is to test the accuracy of the database using patients with confirmed 

pathologies where the location of the pathology is known by other imaging methods, e.g., 

CT-scan or MRI or PET, etc.   Validity is estimated by the extent that there is a high 

correspondence between the location of the confirmed pathology and the location of the 

3-dimensional sources of the EEG that correspond to the location of the pathology.   Here 

is a partial list of studies showing concordance validity with fMRI and LORETA 

(Mobascher et al, 2009a; 2009b;  Esposito et al, 2009a; 2009b; Brookings et al, 2009; 

Yoshioka et al, 2008; Schulz et al, 2008) and between PET and LORETA (Horacek et al, 

2007;  Hu et al, 2007; Zumsteg et al, 2005; Tišlerová et al, 2005; Kopeček et al, 2005; 

Pizzagalli et al, 2004) and between SPECT and LORETA (Korn et al, 2005).   Figure 12 

shows an example of the EEG from an epilepsy patient in which maximal epileptic 

discharges are present in the left temporal, left parietal and left occipital regions.  Content 
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validity of LORETA is established by the fact that the maximum amplitude of epilepsy 

was in the left temporal lobe lead (T5) at 3 Hz as measured by the FFT and the Z scores 

from the scalp surface.   The sources were localized to Brodmann area 22 left superior 

temporal gyrus and Brodmann area 13 of the left insular cortex.    

 

Figure 12:  Top is the EEG from a patient with Left Temporal Lobe epilepsy where the 
maximum spike and waves are present in T5, O1, P3 and T3.  The FFT power spectrum 
and the corresponding surface EEG Z scores are shown in the top right side.   Bottom, are 
the left and right hemisphere displays of the maximal Z scores using LORETA.   It can be 
seen that only the left temporal lobe has statistically significant Z values.  Planned 
comparisons and hypothesis testing based on the frequency and location of maximal 
deviation from normal on the surface EEG are confirmed by the LORETA Z score 
normative analysis (from Thatcher et al, 2005b). 
 

LORETA is low resolution electromagnetic tomography (est. 2 – 4 cm resolution) and 

precise millimeter localization of epileptic foci is beyond the resolution of LORETA. 

Nonetheless, verification of the surface EEG with 3-dimensional source currents 

illustrates the use of hypotheses as to the expected hemisphere and regions based on the 
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surface EEG.  In this case the hypothesis from the surface EEG was that there is an 

expected source in the left temporal regions (Brodmann areas were predicted before-

hand) and this hypothesis was confirmed.   This is an example of specificity of a Z score 

normative database in which 3-dimensional hypotheses are formed (and thus planned 

comparisons) based on the surface EEG and the hypothesis is then tested using LORETA. 

 Figure 13 (Top) shows an example of the EEG from a TBI patient with a right 

hemisphere hematoma.  The maximum amplitude of slow waves (1- 6 Hz) was in the 

right pre-frontal (C4), right parietal (P4) as well as right occipital regions (O2) as 

measured by the FFT and the Z scores from the scalp surface.  

Figure 13:  Top is the EEG from a patient with a right hemisphere hematoma where the 
maximum slows waves are present in C4, P4 and O2.  The FFT power spectrum from 1 to 
30 Hz and the corresponding Z scores of the surface EEG are shown in the right side of 
the EEG display.  Bottom, are the left and right hemisphere displays of the maximal Z 
scores using LORETA.   It can be seen that only the right hemisphere has statistically 
significant Z values.  Planned comparisons and hypothesis testing based on the frequency 
and location of maximal deviation from normal on the surface EEG are confirmed by the 
LORETA Z score normative analysis. (from Thatcher et al, 2005b) 
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 Figure 13 (Bottom) shows the Z scores in LORETA slices in the right hemisphere 

hematoma patient which were consistent with the surface EEG deviation from normal by 

being in the right hemisphere and near to the area of maximal damage.   The maximum Z 

scores were present in the right post-central gyrus at 5 Hz and were localized to 

Brodmann area 43 right post-central gyrus as well as Brodmann areas 13 right insula 

cortex and 41 right transverse temporal gyrus. 

 Figure 14 (Top) shows an example of the EEG from a right hemisphere stroke 

patient.  The maximum Z scores from the scalp EEG were in the right anterior frontal 

regions (F4 & Fp2) at 23 Hz.  It can be seen that the maximum Z scores were present in 

the right frontal regions at 23 Hz and the Key Institute Talairach Atlas were maximally 

localized to Brodmann area 9 right inferior frontal gyrus as well as Brodmann area 6 right 

frontal pre-central gyrus.  This is another example of validation of a LORETA Z score 

normative database in which 3-dimensional hypotheses are formed (and thus planned 

comparisons) based on the surface EEG and the hypothesis is then tested using LORETA. 

Figure 14:  Top is the EEG from a patient with a right frontal lobe stroke where the 
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maximum slows waves are present in F4 and Fp2.  The FFT power spectrum from 1 to 30 
Hz and the corresponding Z scores of the surface EEG are shown in the right side of the 
EEG display.  Bottom, are the left and right hemisphere displays of the maximal Z scores 
using LORETA.   It can be seen that only the right hemisphere has statistically significant 
Z values.  Planned comparisons and hypothesis testing based on the frequency and 
location of maximal deviation from normal on the surface EEG are confirmed by the 
LORETA Z score normative analysis. (from Thatcher et al, 2005b) 
 

Construct Validity of a LORETA normative database based on the smoothness at 1 
Hz Resolution and Regions of Interest (ROIs) 
 A smooth distribution of Z scores with maxima near to the location of the 

confirmed injury is expected if parametric statistics using LORTA are valid.  This is an 

example of construct validity.  Figure 15 is a graph of the rank order of Z scores for 

different 1 Hz frequency bands from 1 to 10 Hz for the 2,394 current source values in the 

right hemisphere hematoma patient in figure 15.   It can be seen that the rank ordering of 

the Z scores is smooth and well-behaved at each 1 Hz frequency analysis with maximum 

Z score deviation at 2 – 6 Hz which is the same frequency band in which the surface EEG 

was most deviant from normal (see Figure 13).   A smooth rank ordering of Z scores is 

expected if parametric statistical analysis is valid.    
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Figure 15:   Evaluation of the smoothness of the Z scores in figure 13 for frequencies 1 to 
10 Hz.  The LORETA current source values were rank-ordered for each single hertz 
frequency.   The y-axis is Z scores and the x-axis is the number of gray matter pixels from 
1 to 2,394.   (from Thatcher et al, 2005b) 
 

Reliability Defined 

 Reliability is the extent to which an experiment, test, or any measuring procedure 

yields the same result on repeated trials.  Researchers and clinicians would be unable to 

satisfactorily draw conclusions, formulate theories, or make claims about the 

generalizability of their research without the agreement of independent and replicable 

observations nor to be  able to replicate research procedures, or use research tools and 

procedures that yield consistent measurements.   The measurement of any phenomenon 

always contains a certain amount of chance error.   The null hypothesis in any test of 

reliability is where reliability = 0, that is,  repeated measurements of the same 

phenomenon never duplicate each other and they are not consistent from measurement to 

measurement.  The Type I and Type II errors inherent in the reliability of a sample of 
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digital EEG and/or qEEG can be measured in different ways.  An acceptable level of 

reliability depends on the intended application of the method and on the tolerance of 

error. 

 There are various ways to measure reliability such as: 1- the retest method 

(stability over time), 2-alternative-form method, 3- internal consistency and 4- split-

halves method (Carmines et al, 1979).   The particular method of computing reliability 

depends on the circumstances and/or personal choice.   It is possible to have a measure 

that has high reliability but low validity, that is, one that is consistent in getting wrong 

information or is consistent in missing the mark.   It is also possible for low reliability 

and low validity, that is, inconsistent and never on target.   “Test, re-test reliability” also 

called “stability reliability” is a commonly used method of reliability testing in qEEG and 

is generally defined as the agreement of measuring instruments over time.  Alternative-

form reliability is when different measures provide similar results, for example, EEG 

coherence and EEG phase lock duration or coherences vs comodulation, etc.  To 

determine stability, a measure or test is repeated on the same subjects at different points 

in time. Results are compared and correlated with the initial test to give a measure of 

stability and to detect changes.     The test re-test reliability statistic is a good method to 

detect drowsiness when comparing the beginning of the EEG recording to the end of a 

lengthy recording with eyes closed.    For example, if there is no dramatic change in state 

between the beginning and end of the recording than one would expect high test re-test 

reliability (e.g., > 0.9).  On the other hand, if a patient is drowsy or sleeping near the end 

of the recording, then one would expect the test re-test reliability between the beginning 

of the record to be low (e.g., < 0.9). 

 

Reliability of EEG Autopower Spectrum 

 The autopower spectrum is the real part of the power spectrum that measures the 

amount of energy in a complex wave form at each frequency.  The units are micovolts 

squared per cycle per second or uV2/Hz.    Amplitude or magnitude is simply the square 

root of power and the same reliability measures are used for both power and amplitude.  

The scientific literature demonstrating high reliability (e.g., > 0.9) of quantitative EEG is 
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diverse and quite large and can be read by visiting the National Library of Medicine’s 

database at: 

https://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed and use the search terms “EEG 

and Reliability” and there are a total of 368 citations and a quick review of the abstracts 

shows that the vast majority if not all of these studies are qEEG studies and demonstrate 

high test re-test reliability of the qEEG.   Below are a small but representative sample of 

some of the studies demonstrating high reliability with sample lengths as short as 20 

seconds (Arruda et al 1996; Burgess A, and Gruzelier, 1993; Corsi-Cabrera et al, 1997; 

Gasser et al, 1985; 1988a; Hamilton-Bruce et al, 1991; Chabot et al, 1996; Pollock et al, 

1991; Fernández et al, 1993; John et al, 1987; 1988; Harmony et al, 1993; Lund et al, 

1995; Duffy et al, 1994; Salinsky et al, 1991; McEvoy et al, 2000; Näpflin et al, 2007; 

2008; Towers and Allen, 2009; Van Albada et al, 2007). 

 Gasser et al (1985, pg. 312) concluded: “20 sec of activity are sufficient to reduce 

adequately the variability inherent in the EEG”  

 

Salinski et al (1991, pg. 382) concluded: “Correlation coefficients for broad band 

features averaged 0.92 over the 5 min retest interval and 0.84 over the 12-16 and 

“Coefficients based on 60 sec records were marginally higher than those of 40 or 20 sec 

records.” 

 

Corsi-Cabrera et al (1997, pg. 382) concluded: “The within-subject stability was 

assessed calculating multiple correlation coefficients between all EEG features 

of the eleven sessions of each subject: R-values ranged from 0.85 to 0.97.” 

 

Pollock et al (1991, pg. 20) concluded: “the generally higher reliabilities of 

absolute, as opposed to relative, amplitude measures render them preferable in clinical 

research.”  

 

 EEG spectral stability over a one year period was recently studied by Näpflin and 

colleques with test re-test reliability > 0.9 and they concluded that qEEG intra-individual 

reliability is very high: 
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“Out of all 2400 pairwise comparisons 99.3% were correct, with 
sensitivity 87.5% and specificity 99.5%. The intra-individual stability is 
high compared to the inter-individual variation. Thus, interleaved EEG-
fMRI measurements are valid. Furthermore, longitudinal effects on 
cognitive EEG can be judged against the intra-individual variability in 
subjects.” (Näpflin et al, 2008, pg. 2519). 
 

A recent study by Van Albada and colleagues evaluated the variable contributions 

of “state” and “trait” by conducting test re-test reliability measures of the qEEG 

recorded from subject each week for six weeks and some subjects for as long as a 

year and concluded: 

 
“About 95% of the maximum change in spectral parameters was reached 
within minutes of recording time, implying that repeat recordings are not 
necessary to capture the bulk of the variability in EEG spectra.” Van 
Albada et al (2007, pg. 279). 

 
 In general, the test re-test reliability of qEEG is an exponential function of 

sample length in which 20 second epochs are approximately 0.8 reliable, 40 

seconds approx. 0.9 reliable and 60 seconds asymptotes at approx. 0.95 reliability.  

Figure 16 shows an example of visual EEG traces (non-qEEG) and qEEG (right 

panels) on the same computer screen at the same time.   Reliability measures 
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Fig. 16.  An example of visual EEG traces, qEEG, Split-Half reliabilities and test re-test reliabilities on the 
same screen at the same.  Panel to the left are the EEG traces, top right panel is the FFT power spectrum 
from 1 to 30 Hz and bottom right panel are Z scores from 1 to 30 Hz. 
 

of selected segments of the EEG are immediately displayed on the left side of the display.  

In this way professionals can immediately evaluate the test re-test reliability of their 

artifact free selections and use the qEEG analyses as a micro-analysis or fine grain 

analysis of the EEG traces.   If test re-test reliabilities are > 0.9 and there is no evidence 

of drowsiness or artifact in the record then further quantitative analyses can be 

performed. 

Reliability of EEG Coherence 

As mentioned previously, coherence is itself a statistical measure of reliability 

because it is a measure of the stability of phase differences between two EEG time series.   

If the phase difference is unreliable, i.e., phase differences are randomly changing from 

time sample to time sample, then coherence = 0.  If the phase differences are unchanging 

then coherence = 1.    High test re-test reliability of EEG coherence has been reported 

over the years when coherence is correctly computed even though more statistical 

samples are often required in order to obtain statistical sufficiency.  If regions of the brain 
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are weakly coupled or disconnected, then coherence has low values within a subject as 

well as low test re-retest reliability across experiments and across subjects as expected.   

If regions of the brain are strongly coupled and coherence exhibits statistically significant 

values  then coherence typically also exhibits high test re-test reliability (the greater the 

coherence then the more within session and between session reliability by definition).   

Adey et al (1961) were among the first to measure the test re-test reliability of EEG 

coherence with values > 0.8.   Subsequently, high re-test reliability of EEG coherence 

(0.8 to 0.95) was reported by John (1977); John et al (1987); Chabot et al (1996); Gasser 

et al (1988a); Harmony et al, 1993; Thatcher et al, 1986; 2003; and Corsi-Cabrera et al 

(2007).  Gudmondsson et al (2007) reported low test re-test reliability of coherence 

because of an invalid computation of coherence due to the use of an average reference. If 

the authors used a common reference and coherence was low, e.g., < 0.2 then this means 

that two brain regions are reliably disconnected.   If the reader finds any study that claims 

that coherence has low reliability, immediately examine the methods section and see if 

the authors used an average reference or a Laplacian reference or ICA to create a new 

time series and if so, then dismiss the study because they used an invalid method of 

measuring coherence in the first place.  Remember, reliability is irrelevant if the measure 

is not valid to begin with.    

 

Summary 

 The fact that qEEG meets high standards of reliability and validity is 

demonstrated by hundreds of paper reviewed journal articles a few of which are cited in 

this review.   The critics of qEEG are those that rely solely on “Eye-Ball” examination of 

the EEG traces and are biased against and opposed to the use of computers to improve the 

accuracy, validity and reliability of the electroencephalogram (Nuwer, 1997).   The 

American Academy of Neurology (ANN) position paper (Nuwer, 1997) categorized 

qEEG as “experimental” for a wide range of clinical disorders because of the blanket 

assertion that qEEG is “unreliable” without citing a single study to refute the scientific 

literature that demonstrates high reliability and validity.   Hopefully, this review will help 

those that use qEEG for clinical purposes to refute the false claims of those that make 

blanket statements that the qEEG is invalid and unreliable by responding with solid 
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scientific evidence that proves the opposite.  It is the responsibility of those that use 

qEEG technology to respond to false claims by citing facts and citing the scientific 

literature when ever possible. 
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Figure Legends 

Figure One - shows an example of four 1 uV and 5 Hz sine waves with the second to the 4th sine 

wave shifted by 30 degrees.    Gaussian noise is added incrementally to channels 2 to 4.  Channel 

2 = 1 uV signal + 2 uV of noise, channel 3 = 1 uV signal + 4 uV of noise and channel 4 = 1 uV 

signal +  6 uV of noise.   Nineteen channels were used in the analyses of coherence in 2 uV of 

noise increments.    The FFT analysis is the mean of thirty 2 second epochs sampled at 128 Hz. 

Figure Two- Top is coherence (y-axis) vs signal-to-noise ratio (x-axis).   Bottom is phase angle 

on the y-axis and signal-to-noise ratio on the x-axis.  Phase locking is minimal or absent when 

coherence is less than approximately 0.2 or 20%.  The sample size was 60 seconds of EEG data 

and smoother curves can be obtained by increasing the epoch length. 

Figure Three -   Left top is coherence (y-axis) vs signal-to-noise ratio (x-axis) with a 300 phase 

shift as shown in figure 2 using the average reference.   The left bottom is phase differences in 

degrees in the y-axis and the x-axis is the signal-to-noise ratio using the average reference. The 
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right top graph is coherence (y-axis) vs signal-to-noise ratio (x-axis) using the Laplacian 

montage.  The right bottom is phase difference on the y-axis and signal-to-noise on the x-axis 

using the Laplacian montage.  In both instances, coherence drops off rapidly and is invalid with 

no linear relationship between signal and noise .   The bottom graphs show that both the 

average reference and the Laplacian montage fails to track the 300 phase shift that was present  

in the original time series.  In fact, the phase difference is totally absent and unrepresented 

when using an average reference or a Laplacian montage and these simulations demonstrate 

that the average reference and the Laplcain montage are not physiologically valid because they 

do not preserve phase differences or  the essential time differences on which the brain operates.    

Figure Four- Demonstration of distortions in phase differences in a test using 20 deg increments 

of phase difference with respect to Fp1.   The solid black line is using a Linked Ears common 

reference which accurately shows the step by step 20 deg. Increments in phase difference.   The 

average reference (dashed blue line) and the Laplacian (dashed red line) significantly distort the 

phase differences.   

Figure Five- Example of Gaussian Cross-Validation of EEG Normative Database (from 

Thatcher et al, 2003). 

Figure Six - Illustration of method of computing error rates or sensitivity of a normative EEG 

database based on the cross-validation deviation from Gaussian (from Thatcher et al, 2003a). 

Figure Seven – Example of predictive and content validity by clinical correlations of qEEG with 

Neuropsychological test scores (Thatcher et al, 2001). 

Figure Eight - Example of content validity demonstrated by statistically significant correlations 

between full scale I.Q. and qEEG (from Thatcher et al, 2005c). 

Figure Nine - Example of “Planned comparisons” using hypothesis creation prior to launching 

LORETA.  Content and construct validity are present because the patient was hit on the right 

parietal lobe and the right parietal lobe shows deviant EEG activity (e.g., > 2 st. dev.)    Further 

construct validity is established by LORETA analyses that confirm anatomical hypotheses based 

on the surface EEG locations and frequencies of deviance. 

Figure Ten - An example of construct validity of the qEEG to correlate with the MRI in the 

estimate of traumatic brain injury (adapted from Thatcher et al, 1998a; 1998b). 

Figure Eleven- The distribution of the Z scores of the current source density LORETA values at 

1 Hz resolution.  The y-axis is the number or count and the x-axis is the Z Score, defined as the 
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mean – each value in each of the 2,394 pixels divided by the standard deviation (from Thatcher 

et al, 2005b).    

Figure Twelve - Top is the EEG from a patient with Left Temporal Lobe epilepsy where the 

maximum spike and waves are present in T5, O1, P3 and T3.  The FFT power spectrum and the 

corresponding surface EEG Z scores are shown in the top right side.   Bottom, are the left and 

right hemisphere displays of the maximal Z scores using LORETA.   It can be seen that only the 

left temporal lobe has statistically significant Z values.  Planned comparisons and hypothesis 

testing based on the frequency and location of maximal deviation from normal on the surface 

EEG are confirmed by the LORETA Z score normative analysis (from Thatcher et al, 2005b). 

Figure Thirteen - Top is the EEG from a patient with a right hemisphere hematoma where the 

maximum slows waves are present in C4, P4 and O2.  The FFT power spectrum from 1 to 30 Hz 

and the corresponding Z scores of the surface EEG are shown in the right side of the EEG 

display.  Bottom, are the left and right hemisphere displays of the maximal Z scores using 

LORETA.   It can be seen that only the right hemisphere has statistically significant Z values.  

Planned comparisons and hypothesis testing based on the frequency and location of maximal 

deviation from normal on the surface EEG are confirmed by the LORETA Z score normative 

analysis. (from Thatcher et al, 2005b). 

Figure Fourteen - Top is the EEG from a patient with a right frontal lobe stroke where the 

maximum slows waves are present in F4 and Fp2.  The FFT power spectrum from 1 to 30 Hz 

and the corresponding Z scores of the surface EEG are shown in the right side of the EEG 

display.  Bottom, are the left and right hemisphere displays of the maximal Z scores using 

LORETA.   It can be seen that only the right hemisphere has statistically significant Z values.  

Planned comparisons and hypothesis testing based on the frequency and location of maximal 

deviation from normal on the surface EEG are confirmed by the LORETA Z score normative 

analysis. (from Thatcher et al, 2005b). 

Figure Fifteen - Figure 15:   Evaluation of the smoothness of the Z scores in figure 13 for 

frequencies 1 to 10 Hz.  The LORETA current source values were rank-ordered for each single 

hertz frequency.   The y-axis is Z scores and the x-axis is the number of gray matter pixels from 

1 to 2,394.   (from Thatcher et al, 2005b) 
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Figure Sixteen - An example of visual EEG traces, qEEG, Split-Half reliabilities and test re-test 

reliabilities on the same screen at the same.  Panel to the left are the EEG traces, top right panel 

is the FFT power spectrum from 1 to 30 Hz and bottom right panel are Z scores from 1 to 30 Hz. 

 

7.0 – Table Legends 

Table I - Cross Validation of EEG Normative Database (from Thatcher et  
al,  2003). 
 

Table II - Normative EEG database sensitivities for different age groups at +/- 2 standard 

deviations and +/- 3 standard deviations (from Thatcher et al, 2003a). 

 

Table III - Examples of predictive validity by clinical correlations between qEEG and  

intelligence (WISC-R) and academic achievement tests (WRAT) (from Thatcher et al, 

2003a). 

Table IV - Results of a leave-one-out cross-validation of a LORETA normative database 

(from Thatcher et al, 2005b) 

 
 


